Answer:
2.24dm³
Explanation:
Given parameters:
Mass of He = 40g
Unknown:
Volume of Helium = ?
Solution:
To solve this problem, we convert the given mass to number of moles.
Number of moles =
molar mass of He = 4g/mol
Number of moles =
= 0.1mole
So;
1 mole of gas at rtp occupies a volume of 22.4dm³
0.1 mole of He will occupy a volume of 0.1 x 22.4 = 2.24dm³
Answer: 2.7 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Given: mass of sodium hydrogen carbonate = 3.4 g
mass of acetic acid = 10.9 g
Mass of reactants = mass of sodium hydrogen carbonate+ mass of acetic acid = 3.4 + 10.9= 14.3 g
Mass of reactants = Mass of products in reaction vessel + mass of carbon dioxide (as it escapes)
Mass of carbon dioxide = 14.3 - 11.6 =2.7 g
Thus the mass of carbon dioxide released during the reaction is 2.7 grams.
A and C, Igneous and Metamorphic
its B on plato .. ... . .. . . . . . . ..
Answer:

Explanation:
Hello,
In this case given the molal solution of sucrose, we can assume there are 0.329 moles of sucrose in 1 kg of solvent, thus, computing both the mass of sucrose and solvent in grams, we obtain:


In such a way, we proceed to the calculation of the mass percent as follows:

Regards.