The force exerted by a pressure of any gas over a surface its given by the formula P=F/S (where P is pressure, F force and S surface).
We can multiply both sides of the formula by S to obtain the force.
P*S=(F*S)/S
P*S=F
Solve for P=1.80*10^5 Pa and S=4.10*10^-4 m^2 ([Pa] =[N/m^s])
(1.80*10^5 N/m^s) * (4.10*10^-4 m^2) =F
73.8 N =F
Answer:
0.0257259766982 m
Explanation:
= Atmospheric pressure = 101325 Pa
= Initial diameter = 1.5 cm
= Final diameter
= Density of water = 1000 kg/m³
h = Depth = 40 m
The pressure is

From ideal gas law we have

The diameter of the bubble is 0.0257259766982 m
Answer:

Explanation:
= Strain = 0.49
= 3.1 MPa
At t = Time = 32 s
= 0.41 MPa
= Time-independent constant
Stress relation with time

at t = 32 s

The time independent constant is 16.0787 s

At t = 6

From the first equation



Answer:
Answered
Explanation:
The radius of curvature of the mirror R = 20 cm
then the focal length f = R/2 = 10 cm
(a) From mirror formula
1/f = 1/di + /1do
then the image distance
di = fd_o / d_o - f
= (10)(40) / 40-10
= 30.76 cm
since the image distance is positive so the image is real
ii) when the object distance d_0=20 cm
di = 10×20/ 20-10
= 20
Hence, the image must be real
iii)when the object distance d_0 = 10
di = 10×10 / 10-10 = ∞ (infinite)
the image will be formed at ∞
here also image will be real but diminished.
Answer:
x_{cm} = 4.644 10⁶ m
Explanation:
The center of mass is given by the equation
= 1 /
∑
Where M_{total} is the total masses of the system,
is the distance between the particles and
is the masses of each body
Let's apply this equation to our problem
M = Me + m
M = 5.98 10²⁴ + 7.36 10²²
M = 605.36 10²² kg
Let's locate a reference system located in the center of the Earth
Let's calculate
x_{cm} = 1 / 605.36 10²² [Me 0 + 7.36 10²² 3.82 10⁸]
x_{cm} = 4.644 10⁶ m