As this mechanical energy is associated with height, it would be "Potential Energy" in particular.
U = mgh
U = F.h
U = 1.5 * 4
U = 6 Joules
So, 6 J of energy is lost before it hits the ground.
Hope this helps!
The equilibrium constant of the reaction at 25⁰c will be 426827.5.
<u />
<u>Equilibrium constant</u> :The equilibrium constant comes from the chemical equilibrium law. For the chemical equilibrium state, at a fixed constant temperature, the ratio of the product of the reaction's multiplication to the concentration of its reactants' multiplication, and each is raised to the power to the corresponding coefficients of the elements in the reaction.
The chemical equilibrium is given by for a general chemical reaction.
a. A+ b. B ⇌ c. C+ d. D,.
Kc =[C]c [D]d/[A]a [B]b.
<u>Gibb's free energy</u> :The second law of thermodynamics can be arranged in such a way that it gives a new expression when a chemical reaction happens at a constant temperature and constant pressure.
G=H-TS
T=25⁰c
G=51.4 x 10³J

k= equilibrium constant ,G=Gibbs free energy ,n= no. of moles ,R=Gas constant ,T=temperature ,Z=compressibility


k=51.4 x 10³ x 8.3 + 8.3 x 25
k=426827.5
To learn equilibrium constant-
<u>brainly.com/question/19669218</u>
#SPJ4
As per Newton's III law we can say that
Force applied by object 1 on object 2 is always equal in magnitude and opposite in direction of the force that object 2 apply on object 1.
So we can say it as

now here above question is based upon the same
if a bag of vegetables applied a force F = 22.5 N of the surface stand the the same surface will apply same magnitude of force in opposite direction on the vegetables bag
So our answer will be F = 22.5 N (upwards).
Acceleration is how much the velocity changes within a period of time so,
Acceleration= is the change in velocity divided by change in time
your units will be m/s squared
I think this is the answer hope it helps