1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
3 years ago
10

Which is NOT a way to stay safe from static electricity?

Physics
2 answers:
lidiya [134]3 years ago
5 0
A run though an open field during a thunderstorm is the answer
ElenaW [278]3 years ago
5 0

Answer: C is correct :)

Explanation:

You might be interested in
10 points
enot [183]

Answer:

B

Explanation:

I just took the test

8 0
3 years ago
I am trying to find the magnitude of a resultant vector. Do i take inconsideration the negatives when i find the x & y compo
attashe74 [19]
Absolutely !  If you have two vectors with equal magnitudes and opposite
directions, then one of them is the negative of the other.  Their correct
vector sum is zero, and that's exactly the magnitude of the resultant vector.

(Think of fifty football players pulling on each end of the rope in a tug-of-war. 
Their forces are equal in magnitude but opposite in sign, and the flag that
hangs from the middle of the rope goes nowhere, because the resultant
force on it is zero.)

This gross, messy explanation is completely applicable when you're totaling up
the x-components or the y-components.
4 0
3 years ago
What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.
Studentka2010 [4]

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

4 0
3 years ago
A ball of mass 6 kg is moving to the right with a velocity of 4 m/s when it strikes a 12 kg green block moving to the left at 5
Marat540 [252]

Answer:

Velocity of both masses after the collisio

Explanation:

Hope it will help

<h2><em><u>Brainlists please</u></em></h2>
3 0
3 years ago
What is the approximate efficiency of the engine?
Elodia [21]

Answer:91% I think

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • How is static electricity different from electric current
    14·1 answer
  • The mass of an electron is...
    11·1 answer
  • In a ballistics test, a 24 g bullet traveling horizontally at 1300 m/s goes through a 25-cm-thick 360 kg stationary target and e
    8·1 answer
  • Your license can be suspended for 90 days if you accumulate
    5·1 answer
  • Rank the pressures from highest to lowest:
    13·1 answer
  • Energy is measured in units called what?
    9·2 answers
  • Which of the following statements about gemstones is true? Choose one:
    9·1 answer
  • Suppose you have two cars, and the larger one is twice as massive as the smaller one. If you and a friend push on them so that t
    15·1 answer
  • What purpose does a generator serve in a power plant?
    15·1 answer
  • What is the force the when does when Gravity pushes you​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!