Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v = 
let's calculate
v = 
v = 
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C
Emf e = 11
r 1 = 3.0
r 2 = 3.0
r 3 = ?
The two in parallel are equivalent to 3 • 3/6 = 1.5 Ω
To have 2.4 volts across them, the current is I = 2.4/1.5 = 1.6 amps. and the unknown R = (11–2.4) / 1.6 = 5.375 Ω or 5.4 Ω
Explanation:
Hey, there!
Answer: It sinks more.
We know that the water of sea is salty in nature which increases the density of water in sea and donot let's ship sink but in condition of river water it doesn't have any effects of salty water as it doesn't contain salty water due to which it's density is no more than the densityof ship which let's it sink more than sea water.
<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer: 8.242 × 10 exp -8 N
Explanation: F = G *m* M/r^2
r = √(13-5)^² + (51-15)^² + (0-0)²
r = 8; the distance between the masses
G =6.673 × 10 -¹¹ Nm²kg-²
F = gravitational force of attraction of m(51kg) on M {1550kg)
Answer:

Work:

Hope this helps you. Kinematics can be tricky, but I'm sure you'll get a good grip on it. Have a good night.