Answer: -3.49 m/s (to the south)
Explanation:
This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum
must be equal to the final momentum
, and taking into account this is aninelastic collision:
Before the collision:
(1)
After the collision:
(2)
Where:
is the mass of the car
is the velocity of the car, directed to the north
is the mass of the truck
is the velocity of the truck, directed to the south
is the final velocity of both the car and the truck
(3)
(4)
Isolating
:
(5)
(6)
Finally:
The negative sign indicates the direction of the velocity is to the south
Answer:
largest lead = 3 m
Explanation:
Basically, this problem is about what is the largest possible distance anchorman for team B can have over the anchorman for team A when the final leg started that anchorman for team A won the race. This show that anchorman for team A must have higher velocity than anchorman for team B to won the race as at the starting of final leg team B runner leads the team A runner.
So, first we need to calculate the velocities of both the anchorman
given data:
Distance = d = 100 m
Time arrival for A = 9.8 s
Time arrival for B = 10.1 s
Velocity of anchorman A = D / Time arrival for A
=100/ 9.8 = 10.2 m/s
Velocity of anchorman B = D / Time arrival for B
=100/10.1 = 9.9 m/s
As speed of anchorman A is greater than anchorman B. So, anchorman A complete the race first than anchorman B. So, anchorman B covered lower distance than anchorman A. So to calculate the covered distance during time 9.8 s for B runner, we use
d = vt
= 9.9 x 9.8 = 97 m
So, during the same time interval, anchorman A covered 100 m distance which is greater than anchorman B distance which is 97 m.
largest lead = 100 - 97 = 3 m
So if his lead no more than 3 m anchorman A win the race.
Answer:
Social media has helped many businesses grow and promote itself, and has helped people find a better way to connect and communicate with one another. On the other hand, it's also provided many people with problems involving mental health, emotional insecurities, and waste of time
Explanation:
what they said is correct
<h2>
Hey There!</h2><h2>
_____________________________________</h2><h2>
Answer:</h2><h2 /><h2>

</h2><h2>
_____________________________________</h2>
<h2>DATA:</h2>
mass = m = 2kg
Distance = x = 6m
Force = 30N
TO FIND:
Work = W = ?
Velocity = V = ?
<h2>
SOLUTION:</h2>
According to the object of mass 2 kg travels a distance when the force was exerted on it. The graph between the Force and position was plotted which shows that 30 N of force was used to push the object till the distance of 6.0m.
To find the work, I will use the method of determining the area of the plotted graph. As the graph is plotted in the straight line between the Force and work, THE PICTURE ATTCHED SHOWS THE AREA COVERED IN BLUE AS WORK DONE AND HEIGHT AS 30m AND DISTANCE COVERED AS 6m To solve for the area(work) of triangle is given as,

Base is the x-axis of the graph which is Position i.e. 6m
Height is the y-axis of the graph which is Force i.e. 30N
So,

W = 90 J
The work done is 90 J.
According to the principle of work and kinetic energy (also known as the work-energy theorem) states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle.



<h2>_____________________________________</h2><h2>Best Regards,</h2><h2>'Borz'</h2>
Answer:
yes, They will be able to move the dresser.
Explanation:
sliding force 90N
55N + 38N = 93N
therefore, yes the twins can move the dresser