The standard enthalpy of formation for chlorine is zero but the standard entropy is larger than 0 because it is the elemental state of chlorine.
The standard enthalpy of formation for chlorine is zero because cl2 is the elemental state of chlorine and it does not require any energy for the formation of the standard state of chlorine.
The entropy of any system cannot be negative. It can only be positive or zero.
The entropy of a system will become zero only at a absolute zero temperature.
That's why the entropy of chlorine in elemental state is more than zero because absolutely zero temperature can't be obtained.
To know more about entropy, visit,
brainly.com/question/6364271
#SPJ4
Answer:
group 8 of the periodic table
Explanation:
a) The E might belong to group 13.
As the formula of a chemical compound is derived by the cross multiplication of the valency of the atoms. As formula of the given oxide is and valency of O atom is -2, therefore valency of element E must be +3 in order to obtain E2O3.
Also, in EF3, the valency of E will be +3 because there are three atoms of fluorine who has an individual valency of -1. Thus, e will have the valency of +3.
The Group 13 is the boron group which has the following elements:
- Boron
- Aluminium
- Gallium
- Indium
- Thallium
All these elements have the valency of +3.
To know more about Valency, refer to this link:
brainly.com/question/12717954
#SPJ4
<span>Those characteristic belong to an ionic compountd. Ionic compounds have strong bonds between their atoms (ionic bond is the strongest molecular bond) which conferes this kind of compounds high melting point, wich 9811 K is. Ionic compounds do not transmit current, because they do not have free electrons, like metals do, then they are poor conductors as solid. Ionic compounds dissolve in water into ions which are charges that can move, becoming then good conductors. The structure of ionic compound is a net of cristals which make them hard and brittle. Then, the answer i s option (4) an ionic compound.</span>
Answer:
D. when the number of moles of acid is exactly equal to the number of moles of base.
Explanation:
<em>Regarding options A. and E</em>., pKa and pKb would only be taken into consideration if the titrations were of <em>weak</em> acids and bases. However it is possible to have a titration of monoprotic acids and bases with strong acids and bases.
Another way of looking at the answer is identifying <em>which one best describes the equivalence point</em>.