Taking into account the reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
Ca₃P₂ + 6 H₂O → 3 Ca(OH)₂ + 2 PH₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Ca₃P₂:1 mole
- H₂O: 6 moles
- Ca(OH)₂: 3 moles
- PH₃: 2 moles
The molar mass of the compounds is:
- Ca₃P₂: 182 g/mole
- H₂O: 18 g/mole
- Ca(OH)₂: 74 g/mole
- PH₃: 34 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- Ca₃P₂: 1 mole ×182 g/mole= 182 grams
- H₂O: 6 moles× 18 g/mole= 108 grams
- Ca(OH)₂: 3 moles ×74 g/mole= 222 grams
- PH₃: 2 moles ×34 g/mole= 68 grams
<h3>Correct statements</h3>
Then, by reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
Learn more about the reaction stoichiometry:
<u>brainly.com/question/24741074</u>
<u>brainly.com/question/24653699</u>
Answer:
14 gallons
Explanation:
357 divided by 14 = 25.5 and if you check your answer 14 x 25.5 = 357 (i hope this is right)
Phosgene on reacting with <span>phenylmagnesium bromide generates
benzoyl chloride.
Since, </span>phenylmagnesium bromide is added in excess. It would further react with benzoyl chloride to form
benzophenone.
Benzophenone on further reacting with phenylmagnesium bromide, and aqueous treatment, gives
triphenylmethanol.
Entire reaction pathways is shown below:
The Bohr atomic model, relying on quantum mechanics, built upon the Rutherford model to explain the orbits of electrons.
It is effected by diffusion (the power of smell and wind spread) but a solid is not.