Answer:
205K
Explanation:
The following were obtained from the question:
n = 4moles
P = 5.6atm
V = 12L
R = 0.082atm.L/Kmol
T =?
PV = nRT
T = PV/nR
T = (5.6 x 12)/ (4 x 0.082)
T = 205K
There are 1000 mg in 1 g
and there are 1000 g in 1 kg
Start by converting 1.34 mg to grams by dividing 1.34 mg by 1000 g = 0.00134 g
Then convert 0.00134 g to kg by dividing 0.00134 g by 1000 kg = 1.34×10^-6 kg OR 0.00000134 kg
Answer:
C. All electron carriers are mobile and hydrophobic
Explanation:
Hello,
In this case, it is widely known that the electron carriers move inside the inner mitochondrial membrane and consequently move electrons from one to another. In such a way, they are mobile, therefore they are largely hydrophobic as long as they are inside the membrane.
For instance, the cytochrome c is a water-soluble protein in a large range, therefore, the answer is: C. All electron carriers are mobile and hydrophobic.
Best regards.
Answer:
64.52 mg.
Explanation:
The following data were obtained from the question:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Final amount (N) =.?
Next, we shall determine the rate constant (K).
This is illustrated below:
Half life (t½) = 1590 years
Rate/decay constant (K) =?
K = 0.693 / t½
K = 0.693/1590
K = 4.36×10¯⁴ / year.
Finally, we shall determine the amount that will remain after 1000 years as follow:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Rate constant = 4.36×10¯⁴ / year.
Final amount (N) =.?
Log (N₀/N) = kt/2.3
Log (100/N) = 4.36×10¯⁴ × 1000/2.3
Log (100/N) = 0.436/2.3
Log (100/N) = 0.1896
Take the antilog
100/N = antilog (0.1896)
100/N = 1.55
Cross multiply
N x 1.55 = 100
Divide both side by 1.55
N = 100/1.55
N = 64.52 mg
Therefore, the amount that remained after 1000 years is 64.52 mg
Answer:
chemical stability is important to consider in the comprehensive assessment of pharmaceutical properties, activity, and selectivity during drug discovery.