Slope intercept form is y = mx+b, so you can see that you set the equation equal to y. So if the equation is 2y+3x=6, then you solve for y to put it in slope intercept form.
2y + 3x = 6
2y = -3x + 6
y = (-3/2)x + 3
Keep in mind that the term with the x has to be before the constant, so it can't be y = 3 -(3/2)x
And by the way m is the slope and b is y-intercept, so in <span>y = (-3/2)x + 3, -3/2 is slope and (0,3) is y-intercept</span>
Answer:

![\large\boxed{2.\ ab^{-3x}=a\left(\dfrac{1}{b}\right)^{3x}=a\left[\left(\dfrac{1}{b}\right)^3\right]^x}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B2.%5C%20ab%5E%7B-3x%7D%3Da%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E%7B3x%7D%3Da%5Cleft%5B%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E3%5Cright%5D%5Ex%7D)
Step-by-step explanation:
![Use:\ a^{-n}=\left(\dfrac{1}{a}\right)^n\\------------\\\\(4)^{-3x^2}=\left[(4)^{-1}\right]^{3x^2}=\left(\dfrac{1}{4}\right)^{3x^2}](https://tex.z-dn.net/?f=Use%3A%5C%20a%5E%7B-n%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7Ba%7D%5Cright%29%5En%5C%5C------------%5C%5C%5C%5C%284%29%5E%7B-3x%5E2%7D%3D%5Cleft%5B%284%29%5E%7B-1%7D%5Cright%5D%5E%7B3x%5E2%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7B4%7D%5Cright%29%5E%7B3x%5E2%7D)
![Use:\ a^{-n}=\left(\dfrac{1}{a}\right)^n\ and\ (a^n)^m=a^{nm}\\--------------------\\\\ab^{-3x}=a\cdot b^{-3x}=a\left[(b)^{-1}\right]^{3x}=a\left(\dfrac{1}{b}\right)^{3x}\\\\ab^{-3x}=a\left(\dfrac{1}{b}\right)^{3x}=a\left[\left(\dfrac{1}{b}\right)^3\right]^x](https://tex.z-dn.net/?f=Use%3A%5C%20a%5E%7B-n%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7Ba%7D%5Cright%29%5En%5C%20and%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C--------------------%5C%5C%5C%5Cab%5E%7B-3x%7D%3Da%5Ccdot%20b%5E%7B-3x%7D%3Da%5Cleft%5B%28b%29%5E%7B-1%7D%5Cright%5D%5E%7B3x%7D%3Da%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E%7B3x%7D%5C%5C%5C%5Cab%5E%7B-3x%7D%3Da%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E%7B3x%7D%3Da%5Cleft%5B%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E3%5Cright%5D%5Ex)
Longer leg = x + 4
Shorter leg = x
Hypotenuse = x + 8
Using Pythagorean Theorem:
a^2 + b^2 = c^2
(x + 4)^2 + x^2 = (x + 8)^2
x^2 + 8x + 16 + x^2 = x^2 + 16x + 64
2x^2 + 8x + 16 = x^2 + 16x + 64
2x^2 +8x = x^2 + 16x + 48
2x^2 - 8x = x^2 + 48
x^2 - 8x = 48
x^2 - 8x - 48 = 0
You can complete the square from here or use the quadratic formula.
Completing the square:
x^2 - 8x = 48
x^2 - 8x + (-8/2)^2 = 48 + (-8/2)^2
x^2 - 8x + 16 = 48 + 16
(x - 4)(x - 4) = 64 or (x - 4)^2 = 64
x - 4 = +√64 OR x - 4 = -√64
x - 4 = +8 OR x - 4 = -8
x = 12 OR x = -4
However, you can't use negative 4 as a length because your length needs to be a positive.
So x will be 12.
Shorter leg: 12
Longer leg: 12 + 4
Hypotenuse: 12 + 8
Answer: 3 13/24
Step-by-step explanation:
<u>Turn 7 1/6 into an Improper Fraction:</u>
43/6 - 3 5/8
<u>Turn 3 5/8 into an Improper Fraction:</u>
43/6 - 29/8
<u>Subtract:</u>
43/6 - 29/8= 85/24
<u>Turn 85/24 into a Mixed Number (Final Step):</u>
85/24 = 3 13/24
<u>Answer:</u>
3 13/24
Hope this Helps!
<u></u>
Answer:
y = 2x - 3
Step-by-step explanation:
y - - 3 = 2(x-0)
y + 3 = 2x
y = 2x -3