Well most of the particles did pass through and a few were deflected. but i think the answer is A
Answer:
The force exerted on an electron is 
Explanation:
Given that,
Charge = 3 μC
Radius a=1 m
Distance = 5 m
We need to calculate the electric field at any point on the axis of a charged ring
Using formula of electric field


Put the value into the formula


Using formula of electric field again

Put the value into the formula


We need to calculate the resultant electric field
Using formula of electric field

Put the value into the formula


We need to calculate the force exerted on an electron
Using formula of electric field


Put the value into the formula


Hence, The force exerted on an electron is 
Answer:
3.59 m/s
Explanation:
We are given that
Mass of lineman,m=85 kg
Mass of receiver,m'=90 kg
Speed of receiver,v'=5.8 m/s
Speed of lineman,v=4.1 m/s

We have to find the their velocity immediately after the tackle.
Initial momentum,
According to law of conservation of momentum
Initial momentum=Final momentum=


Answer:
transmission: the passing of a wave through an object
Explanation:
Answer:
2 in front of water and 1 in front of oxygen
Explanation:
This question is describing balancing a chemical reaction. A balanced chemical reaction has the same number of atoms of each elements on both the reactant and product side. According to the question, the reactants contains 4 atoms of oxygen. The reactants give rise to water (H20) and O2 in the products side.
This reaction is most likely the decomposition of hydrogen peroxide (H2O2) as follows:
H2O2 (l) ----> H2O (l) + O2(g)
Based on the description, H2O2 will be 2H2O2 as it is said to contain four atoms of oxygen. This means that, in order to have a balanced equation, we must place coefficient 2 in front of water and coefficient 1 in front of oxygen. That is;
2H2O2 (l) ----> 2H2O (l) + O2(g)