1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Diano4ka-milaya [45]
4 years ago
8

if a metal object was cut on half how much heat will be required to raise both half to a specific temperature

Physics
1 answer:
il63 [147K]4 years ago
3 0

suppose the mass of a metal object be m and its specific heat capacity be s, and, H joules of heat is required to raise its temperature by t degrees Celsius

Than H is given by relation, H = mst

Now if this object is cut in two half's, than mass of half part will also be half <em>i.e. </em>M/2

So heat required to heat the half part will be = (\frac{m}{2}) st =\frac{mst}{2} = H/2  

Hence, the heat required to raise the half object to a specific temperature will also become half.

You might be interested in
I’ll name u BRAINLIEST if u get this right
nekit [7.7K]
V = m1 u1 - m2 u2 / m1
v = 0.01 * 500 - 2 * 1.4 / 0.01
v = 220 m/s
7 0
3 years ago
Two small spheres assumed to be identical conductors are placed at 30 cm from each other on a horizontal axis. the first S1 is l
charle [14.2K]

a) The electric force exerted by S1 on S2 is 21.58μN.

In this case we are talking about two different types of charges, a positive charge and a negative charge, therefore, they are sensing a force of attraction.  

The magnitude of the force is determined by using the following formula:

F_{e}=k_{e}\frac{|q_{1}||q_{2}|}{r^{2}}

where:

= Electric force [N]

= Electric constant ()

= First charge [C]

= Second charge [C]

r =  distance between the two charges

So, in this case, the force can be calculated like this:

F_{e}=(8.99x10^{9}N\frac{m^{2}}{C^{2}})\frac{|12x10^{-9}C||18x10^{-9}C|}{(30x10^{-2}m)^{2}}

So the force will be equal to:

F=21.58x10^{-6}N

which is the same as:

F=21.58 \micro N

b) The electric field created by S1 at the level of S2 is 1.20 \frac{kN}{C}

The electric field tells us how many Newtons of force can be applied on a given point in space per unit of charge caused by an existing electric charge. From the concept, we can take the following formula for the electric field.

E_{S1}=\frac{F_{e}}{q_{2}}

where:

= electric field generated by the first sphere.

 

E_{S1}=\frac{1.20 x10^{-6}N}{18x10^{-9}C}

which yields:

E_{S1}=1.20x10^{3} \frac{N}{C}

E_{S1}=1.20 \frac{kN}{C}

When talking about electric fields, we know what their direction is if we suppose the electric field is always affecting a positive charge in the given point in space. In this case, since S1 is positive, we can asume the electric field is in a direction away from S1.

c)

The electric potential created by S1 at the level or S2 is 360V

Electric potential is defined to be the amount of energy you will have at a given point per electric charge. This electric potential can be found by using the following formula:

V=Er

Where V is the electric potential and it is given in volts.

  • Volts are defined to be 1 Joule per Coulomb. Energy by electric charge.

So we can use the data found in the previous sections to find the electric potential:

V=(1.20x10^{3} \frac{N}{C})(30x10^{-2}m)

V=360V

d)  The force exerted by S2 on S1 will be the same in magnitude as the force exerted by S1 on S2 but oposite in direction. This is because the force will depend on the two charges, and the distance between them, so:

The electric force exerted by S1 on S2 is 21.58μN.

 

The magnitude of the force is determined by using the following formula:

F_{e}=k_{e}\frac{|q_{1}||q_{2}|}{r^{2}}

F_{e}=(8.99x10^{9}N\frac{m^{2}}{C^{2}})\frac{|12x10^{-9}C||18x10^{-9}C|}{(30x10^{-2}m)^{2}}

So the force will be equal to:

F=21.58x10^{-6}N

which is the same as:

F=21.58 \micro N

e) The electric field generated by S1 in the middle of S1 and S2 is 4.79 \frac{kN}{C}

In order to find the electric field generated by S1, we can make use of the following formula

E=k_{e} \frac{q_{1}}{r_{1}^{2}}

E=(8.99x10^{9} N\frac{m^{2}}{C^{2}})(\frac{12x10^{-9}C}{(15x10^{-2}m)^{2}})

which yields:

E=4.79 \frac{kN}{C}

f)  The electric field in the middle of S1 and S2 is 11.99 \frac{kN}{C}

In order to find the electric field generated by two different charges at a given point is found by using the following formula:

E=k_{e} \sum \frac{q_{i}}{r_{i}^{2}}

where:

q_{i}= each of the charges in the system

r_{i}= the distance between each of the charges and the point we are analyzing.

Since the electric field is a vector, we need to take into account the individual electric fields' directions. In this case we suppose we have a positive test charge between the two charges. We can see that the positive test charge will sense a force in the same direction independently on if the force is excerted by the positive charge or the negative charge. Therefore both electric fields will have the same direction. We'll suppose the electric fields will be positive then, so:

E=(8.99x10^{9} N\frac{m^{2}}{C^{2}})[\frac{12x10^{-9}C}{(15x10^{-2}m)^{2}}+\frac{18x10^{-9}C}{(15x10^{-2}m)^{2}}]

which yields:

E=11.99 \frac{kN}{C}

g) The electric potential in the middle of S1 and S2 is 1.80 kV

Since we know what the electric field is from the previous question, we can make use of the same formula we used before to find the electric potential in the middle of S1 and S2

So let's take the formula:

V=Er

So we can use the data found in the previous sections to find the electric potential:

V=(11.99x10^{3} \frac{N}{C})(15x10^{-2}m)

V=1.80kV

h)

The electric potential generated by S2 on the position of S1 is 539.4V and can be found by using the following formula:

V=k_{e}\frac{q_{2}}{r}

So we can use the data provided by the problem to find the electric potential.

V=(8.99x10^{9} N\frac{m^{2}}{C^{2}})(\frac{18x10^{-9}C}{30x10^{-2}m})

V=539.4V

8 0
3 years ago
When a transformer is step down then
Vera_Pavlovna [14]

Answer:

Hey!

Your answer should be D!

Explanation:

In a transformer Np / Ns is called the voltage ratio. If Ns is less than Np then Vs is less than Vp. This is called a step-down transformer as the voltage is reduced.

(source from google.com!)

3 0
3 years ago
A snowboarder starts from rest at the top of a slope. They accelerate to 35 m/s over 9 seconds. What is their acceleration?
leonid [27]
  • a=v-u/t

v=35m/s

t=9

  • a=35/9
  • a=3.88m/s²
4 0
3 years ago
A soccer player is running upfield at 10 m/s and comes to a stop in 3 seconds facing the same direction. What is his acceleratio
I am Lyosha [343]
His acceleration would be 3.34 m/s 
5 0
4 years ago
Other questions:
  • A water balloon is dropped out of a fifth floor window and hits an unsuspecting person below 4.0 seconds later. The window is ap
    10·1 answer
  • It took a crew 9 h 36 min to row 8 km upstream and back again. If the rate of flow of the stream was 2 km/h, what was the rowing
    11·1 answer
  • A wire lying along a y axis form y=0 to y=0.25 m carries a current of 2.0 mA in the negative direction of the axis. the wire ful
    6·1 answer
  • A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and
    8·1 answer
  • Heather writes the equations below to represent two lines drawn on the coordinate plane. –6x + 18y = 0 4x – 12y = 20 After a
    12·2 answers
  • How long does it take anya to cover the distance of 5.00 miles ?
    13·1 answer
  • True or False: Erosion is the process that causes the removal of material by moving water, ice, and wind.
    9·1 answer
  • Infrared radiations are produced when a changing electric field creates a
    13·2 answers
  • What is the force of a ball if it has a mass of 10 kg and accelerates at an acceleration of 20 m/s^2? *
    15·1 answer
  • In which device is chemical energy transformed into electrical energy?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!