Explanation:
As the given data is as follows.
m = 6.51 kg, g = 9.8
, h = 66.8 m
mass of water (M) = 0.68 kg, Specific heat of water = 4200 

According to the given situation, the decrease in potential energy of mass will be equal to heat energy gained by water.
Therefore,
mgh = 

4261.7064 = 
1.492 =
- 15
So, 
= 
Therefore, we can conclude that rise in temperature will be
.
Answer:
An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about 2 years.
Explanation:
Given;
orbital period of 3 years, P = 3 years
To calculate the years of an orbital with a semi-major axis, we apply Kepler's third law.
Kepler's third law;
P² = a³
where;
P is the orbital period
a is the orbital semi-major axis
(3)² = a³
9 = a³
a = ![a = \sqrt[3]{9} \\\\a = 2.08 \ years](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%5B3%5D%7B9%7D%20%5C%5C%5C%5Ca%20%3D%202.08%20%5C%20years)
Therefore, An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about 2 years.
Write an equation to calculate the force between two objects if the product of their charges is 10.0 × 10-4 C. (Note: Use the variable R for the distance between the charges.)
F = 900 ÷_________
Answer:
Because their properties like conductivity, electronic configuration and ionization lies in between the metals and nonmetals.
Explanation:
There are a total of six elements that fall in the category of semiconductors.
Namely these are boron, silicon, germanium, arsenic, antimony, and tellurium.
These elements look like metals i.e. are lustrous but do not conduct electricity so well like a metal does.
Their chemical behavior falls between that of metals and nonmetals. For example, the pure metalloids form covalent crystals like the nonmetals, but like the metals, they generally do not form mono-atomic anions.