25 km/hr I hope this helps;)
Answer:
8.46E+1
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = 39 C
Charge 2 (q₂) = –53 C
Force (F) of attraction = 26×10⁸ N
Electrical constant K) = 9×10⁹ Nm²/C²
Distance apart (r) =?
The distance between the two charges can be obtained as follow:
F = Kq₁q₂ / r²
26×10⁸ = 9×10⁹ × 39 × 53 / r²
26×10⁸ = 1.8603×10¹³ / r²
Cross multiply
26×10⁸ × r² = 1.8603×10¹³
Divide both side by 26×10⁸
r² = 1.8603×10¹³ / 26×10⁸
r² = 7155
Take the square root of both side
r = √7155
r = 84.6 m
r = 8.46E+1 m
Hydroelectric power is considered to be an example of multiple transfers of energy because potential energy when the water is in the reservoir turns into kinetic energy making the water move to the dam and then the dam moves into the turbine turning it to electric energy.
Answer:
The rate of transfer of heat is 0.119 W
Solution:
As per the question:
Diameter of the fin, D = 0.5 cm = 0.005 m
Length of the fin, l =30 cm = 0.3 m
Base temperature, 
Air temperature, 
k = 388 W/mK
h = 
Now,
Perimeter of the fin, p = 
Cross-sectional area of the fin, A = 
A = 
To calculate the heat transfer rate:

where

Now,

Answer: all the above options are correct.
Explanation:
In sidewall markings,the load index is given as a letter,traction and temperature ratings are based on the speed rating of the tire,the tire's recommended inflation pressure and load are indicated and the DOT code indicates when and where the tire was made.