Answer: 33.7Ω
Explanation:
Since there are two resistors connected in series, the total resistance (Rtotal) of the circuit is the sum of each resistance.
i.e Rtotal = R1 + R2
R1 = 10Ω
R2 = 23.7Ω
Hence, Rtotal = 10Ω + 23.7Ω
Rtotal = 33.7Ω
Thus, the combined resistance for two resistors is 33.7Ω
Answer:
A) i) using statistical theory of floxy
(Pa)c = 0.816
(Pb)c = 0.816
ii) using Carothers theory
( Pc ) = 0.917
B) To Obtain the measured value of critical extent of reaction ( 0.866) 1 mol of Glycerol will react with 1 mol of dicarboxylic acid, but the same can not be applied to our obtained value because our stoichiometry is different
Explanation:
Given data :
Polycondensation reaction takes place between : 1.2 moles of dicarboxylic acid , 0.4 moles of glycerol and 0.6 moles of ethylene glycol
A) Calculate the critical extents of reaction for gelation
i) using statistical theory of floxy
(Pa)c = 0.816
(Pb)c = 0.816
ii) using Carothers theory
( Pc ) = 0.917
attached below is the detailed solution
B) To Obtain the measured value of critical extent of reaction ( 0.866) 1 mol of Glycerol will react with 1 mol of dicarboxylic acid, but the same can not be applied to our obtained value because our stoichiometry is different
One path because in a series circuit it is only one path while in a parallel circuit you have 2 or more. Our houses use parallel so that is why you can turn off one light and the rest would stay on.
Yes, even light rays can vary in wavelength and frequency, if the length of the ray is sorter, it becomes more energetic and has a higher frequency. If you're talking about a ray tracing diagram for lenses or mirrors, the length of the ray doesn't really matter unless you're finding the path length but there are some procedures for that too. Let me know if I missed what you were asking.
The mass is the number of n + p if you subtract p from mass you will find n
164 - 59 = 105