1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady bird [3.3K]
3 years ago
8

What force must be applied to the end of a rod along the x-axis of length 2.25 m in order to produce a torque on the rod about t

he origin of 11 z-hat N·m? Choose among the available options below. x,y,z,-z
Physics
1 answer:
4vir4ik [10]3 years ago
7 0

Answer:

<h2>4.9N approx.</h2>

Explanation:

Step one:

given data

length of rod r= 2.25m

Required torque = 11 Nm

Required

The force needed to produce a torque of 11Nm

Step two:

<em>"By definition, Torque is the twisting force that tends to cause rotation. </em>

<em>The point where the object rotates is known as the axis of rotation."</em>

Mathematically,

\tau = rF\sin\theta

\tau = torque

r = radius

F = force

\theta = angle between F and the lever arm

in this case is zero

\tau = rF\\\\F=\tau/r

substituting we have

F=11/2.25

F=4.88N

F=4.9N approx.

You might be interested in
Racing cars driven by chris and kelly are side by side at the start of a race. the table shows the velocities of each car (in mi
Mamont248 [21]

Solution

distance travelled by Chris

\Delta t=\frac{1}{3600}hr.

X_{c}= [(\frac{21+0}{2})+(\frac{33+21}{2})+(\frac{55+47}{2})+(\frac{63+55}{2})+(\frac{70+63}{2})+(\frac{76+70}{2})+(\frac{82+76}{2})+(\frac{87+82}{2})+(\frac{91+87}{2})]\times\frac{1}{3600}

=\frac{579.5}{3600}=0.161miles

Kelly,

\Delta t=\frac{1}{3600}hr.

X_{k}=[(\frac{24+0}{2})+(\frac{3+24}{2})+(\frac{55+39}{2})+(\frac{62+55}{2})+(\frac{71+62}{2})+(\frac{79+71}{2})+(\frac{85+79}{2})+(\frac{85+92}{2})+(\frac{99+92}{2})+(\frac{103+99}{2})]\times\frac{1}{3600}

=\frac{657.5}{3600}

\Delta X=X_{k}-X_{C}=0.021miles

4 0
3 years ago
Which statement is true of a wave that’s propagating along the pavement and girders of a suspension bridge?
alexandr1967 [171]
The statement which is true of a wave that’s propagating along the pavement and girders of a suspension bridge is A. The wave is mechanical, with particles vibrating in a direction that is parallel to that of the wave, forming compressions and rarefactions.
8 0
3 years ago
Read 2 more answers
The Nucleus of the Atom is in the center of the Atom, not in the outer rings &amp; orbitals.
chubhunter [2.5K]

Answer:

true

Explanation:

this the nucleus is located at the centre and contains protons and neutrons

3 0
3 years ago
The joule (J) is a unit of energy. Recall that energy may be converted between many different forms such as mechanical energy, t
REY [17]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The workdone is  W = -177.275J

Explanation:

From the question we are told that

      The initial Volume is  Vi = 0.160 L

      The final volume is  V_f = 0.510L

      The external pressure is  P = 5.00 \ atm

Generally the change in volume is

           \Delta V = V_f - V_i

Substituting values we have

           \Delta V = 0.510 -0.160

                 = 0.350L

Generally workdone is mathematically represented as

           W = -P \Delta V

W is negative because the working is done on the environment by the system which is indicated by volume increase

     Substituting values

                W = - 5* 0.350

                    = -1.75 \ L \ \cdot atm

Now  1 \  L \cdot atm = 101.3J

  Therefore  W = -1.75* 101.3

                          = -177.275J

   

7 0
3 years ago
Read 2 more answers
A long thin uniform rod of length 1.50 m is to be suspended from a frictionless pivot located at some point along the rod so tha
Dvinal [7]

Answer:

0.087 m

Explanation:

Length of the rod, L = 1.5 m

Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.

time period, T = 3  s

the formula for the time period of the pendulum is given by

T = 2\pi \sqrt{\frac{I}{mgd}}    .... (1)

where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.

Moment of inertia of the rod about the centre of mass, Ic = mL²/12

By using the parallel axis theorem, the moment of inertia of the rod about the pivot is

I = Ic + md²

I = \frac{mL^{2}}{12}+ md^{2}

Substituting the values in equation (1)

3 = 2 \pi \sqrt{\frac{\frac{mL^{2}}{12}+ md^{2}}{mgd}}

9=4\pi^{2}\times \left ( \frac{\frac{L^{2}}{12}+d^{2}}{gd} \right )

12d² -26.84 d + 2.25 =  0

d=\frac{26.84\pm \sqrt{26.84^{2}-4\times 12\times 2.25}}{24}

d=\frac{26.84\pm 24.75}{24}

d = 2.15 m , 0.087 m

d cannot be more than L/2, so the value of d is 0.087 m.

Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.

3 0
3 years ago
Other questions:
  • Technician A says that the starter motor used to crank diesel engines can draw up to 400 amps of current. Technician B says that
    9·1 answer
  • A sled is moving at a constant speed down a surface inclined at 45 degrees with the horizontal and travels 30meter in 4 seconds.
    5·1 answer
  • Match the correct term with each part of the wave
    7·1 answer
  • Which two layers of the atmosphere are responsible for the majority of the solar radiation absorption?
    15·2 answers
  • How many joules of heat are absorbed to raise the temperature of 435 grams of water at 1 atm from 25°c to its boiling point?
    9·1 answer
  • For a reaction to occur what must happen to the energy in order to break the chemical bond
    5·1 answer
  • 4. Which of the following substance will cool off the fastest?
    5·1 answer
  • What natural phenomena could serve as alternative time standards?
    15·1 answer
  • ​A hose, of radius 0.018 m, is connected to a water faucet. The water pressure at the point where the hose connects to the fauce
    11·1 answer
  • What other objects in our solar systems might influence etiams movement as it travels through space? Why?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!