1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
13

WHAT IS THIS PLSSSSSS HELP

Engineering
1 answer:
alekssr [168]3 years ago
8 0

Answer:

It looks like... A machine that reads electric pulse and surge... Not sure though.

Explanation:

You might be interested in
While discussing what affects the amount of pressure exerted by the brakes: Technician A says that the shorter the line, the mor
harina [27]

Answer:

Only Technician B is right.

Explanation:

The cylindrical braking system for a car works through the mode of pressure transmission, that is, the pressure applied to the brake pedals, is transmitted to the brake pad through the cylindrical piston.

Pressure applied on the pedal, P(pedal) = P(pad)

And the Pressure is the applied force/area for either pad or pedal. That is, P(pad) = Force(pad)/A(pad) & P(pedal) = F(pedal)/A(pedal)

If the area of piston increases, A(pad) increases and the P(pad) drops, Meaning, the pressure transmitted to the pad reduces. And for most cars, there's a pressure limit for the braking system to work.

If the A(pad) increases, P(pad) decreases and the braking force applied has to increase, to counter balance the dropping pressure and raise it.

This whole setup does not depend on the length of the braking lines; it only depends on the applied force and cross sectional Area (size) of the piston.

5 0
3 years ago
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
saveliy_v [14]

Complete Question

For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 470 mm (18.50 in.)?Assume a value of 0.22 for the strain-hardening exponent, n.

Answer:

The elongation is =21.29mm

Explanation:

In order to gain a good understanding of this solution let define some terms

True Stress

       A true stress can be defined as the quotient obtained when instantaneous applied load is divided by instantaneous cross-sectional area of a material it can be denoted as \sigma_T.

True Strain

     A true strain can be defined as the value obtained when the natural logarithm quotient of instantaneous gauge length divided by original gauge length of a material is being bend out of shape by a uni-axial force. it can be denoted as \epsilon_T.

The mathematical relation between stress to strain on the plastic region of deformation is

              \sigma _T =K\epsilon^n_T

Where K is a constant

          n is known as the strain hardening exponent

           This constant K can be obtained as follows

                        K = \frac{\sigma_T}{(\epsilon_T)^n}

No substituting  345MPa \ for  \ \sigma_T, \ 0.02 \ for \ \epsilon_T , \ and  \ 0.22 \ for  \ n from the question we have

                     K = \frac{345}{(0.02)^{0.22}}

                          = 815.82MPa

Making \epsilon_T the subject from the equation above

              \epsilon_T = (\frac{\sigma_T}{K} )^{\frac{1}{n} }

Substituting \ 411MPa \ for \ \sigma_T \ 815.82MPa \ for \ K  \ and  \  0.22 \ for \ n

       \epsilon_T = (\frac{411MPa}{815.82MPa} )^{\frac{1}{0.22} }

            =0.0443

       

From the definition we mentioned instantaneous length and this can be  obtained mathematically as follows

           l_i = l_o e^{\epsilon_T}

Where

       l_i is the instantaneous length

      l_o is the original length

Substituting  \ 470mm \ for \ l_o \ and \ 0.0443 \ for  \ \epsilon_T

             l_i = 470 * e^{0.0443}

                =491.28mm

We can also obtain the elongated length mathematically as follows

            Elongated \ Length =l_i - l_o

Substituting \ 470mm \ for l_o and \ 491.28 \ for \ l_i

          Elongated \ Length = 491.28 - 470

                                       =21.29mm

4 0
3 years ago
Ethane (component A - C2H6) and hydrogen (component B) are fed to a differential reactor where they react on the catalyst to for
Fofino [41]
HELP ILL GIVE MOST BRAINLY AND 50 POINTS
HURRY PLEASE component c it is a compound so it will break
4 0
3 years ago
Suppose you have two boxes in front of you. One box contains a Thevenin Equivalent (voltage source in series with a resistor) an
fomenos

Answer:

1. Measure the temperature of the boxes and leave them unconnected.

2. Norton reduces his circuit down to a single resistance in parallel with a constant current source. A real-life Norton equivalent circuit would be continuously wasting power (as heat) as the current source dumps energy into the resistor, even when externally unconnected, while a Thevenin equivalent circuit would sit there doing nothing.

3. The Norton equivalent box would get warm and eventually run out of power. The Thevenin equivalent box would stay at ambient temperature.

8 0
3 years ago
Lab scale tests performed on a cell broth with a viscosity of 5cP gave a specific cake resistance of 1 x1011 cm/g and a negligib
insens350 [35]

Answer:

5.118 m^3/hr

Explanation:

Given data:

viscosity of cell broth = 5cP

cake resistance = 1*1011 cm/g

dry basis per volume of filtrate = 20 g/liter

Diameter = 8m ,  Length = 12m

vacuum pressure = 80 kpa

cake formation time = 20 s

cycle time = 60 s

<u>Determine the filtration rate in volumes/hr  expected fir the rotary vacuum filter</u>

attached below is a detailed solution of the question

Hence The filtration rate in volumes/hr expected for the rotary vacuum filter

V' = ( \frac{60}{20} ) * 1706.0670

   = 5118.201 liters  ≈ 5.118 m^3/hr

4 0
2 years ago
Other questions:
  • 6.15. In an attempt to conserve water and to be awarded LEED (Leadership in Energy and Environmental Design) certification, a 20
    14·1 answer
  • Is it more difficult to pump oil from a well on dry land or a well under water?Why?
    11·1 answer
  • Block D of the mechanism is confined to move within the slot of member CB. Link AD is rotating at a constant rate of ωAD = 6 rad
    11·1 answer
  • A 13.7g sample of a compound exerts a pressure of 2.01atm in a 0.750L flask at 399K. What is the molar mass of the compound?a. 3
    15·1 answer
  • FREEEEEE POOIIIINTS RIGHT HERE EVERYONE LEVEL UPPPP​
    13·2 answers
  • Two aerial photographs were taken 30 seconds apart over one east-bound lane of l-80 near Grand Island, NE. The following results
    12·1 answer
  • The best penetration is achieved with DCEN current.<br> True or false
    12·1 answer
  • Which type of elevated stand does not need a tree?
    13·1 answer
  • The metal control joints used to relieve stresses caused by expansion and contraction in large ceiling or wall expenses in inter
    8·1 answer
  • which type of irrigation fluid is typically used for endoscopic procedures using monopolar electrosurgery
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!