1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
13

WHAT IS THIS PLSSSSSS HELP

Engineering
1 answer:
alekssr [168]3 years ago
8 0

Answer:

It looks like... A machine that reads electric pulse and surge... Not sure though.

Explanation:

You might be interested in
When block C is in position xC = 0.8 m, its speed is 1.5 m/s to the right. Find the velocity of block A at this instant. Note th
Amanda [17]

Answer:

The answer is "2 m/s".

Explanation:

The triangle from of the right angle:

\to (x_c-0.8)+(1.5+y_4) +\sqrt{x_c^2 + 1.5^2}= constant

Differentiating the above equation:

\to V_c +V_A+ \frac{X_cV_c}{\sqrt{x_c^2 +1}}=0\\\\\to 1-V_A+ \frac{0.8 \times 1.5}{\sqrt{ 0.8^2+1.5}}=0\\\\

\to V_A=  \frac{1.2}{\sqrt{ 0.64+1.5}}+1\\\\

        = \frac{1.2}{ 1.46}+1\\\\= \frac{1.2+ 1.46}{ 1.46}\\\\ = \frac{2.66}{1.46}\\\\= 1.82 \ \frac{m}{s}\\\\= 2 \ \frac{m}{s}

3 0
3 years ago
Steam enters a two-stage adiabatic turbine at 8 MPa and 5008C. It expands in the first stage to a state of 2 MPa and 3508C. Stea
Nataly [62]

Answer:

1) The exergy of destruction is approximately 456.93 kW

2) The reversible power output is approximately 5456.93 kW

Explanation:

1) The given parameters are;

P₁ = 8 MPa

T₁ = 500°C

From which we have;

s₁ = 6.727 kJ/(kg·K)

h₁ = 3399 kJ/kg

P₂ = 2 MPa

T₂ = 350°C

From which we have;

s₂ = 6.958 kJ/(kg·K)

h₂ = 3138 kJ/kg

P₃ = 2 MPa

T₃ = 500°C

From which we have;

s₃ = 7.434 kJ/(kg·K)

h₃ = 3468 kJ/kg

P₄ = 30 KPa

T₄ = 69.09 C (saturation temperature)

From which we have;

h₄ = h_{f4} + x₄×h_{fg} = 289.229 + 0.97*2335.32 = 2554.49 kJ/kg

s₄ =  s_{f4} + x₄×s_{fg} = 0.94394 + 0.97*6.8235 ≈ 7.563 kJ/(kg·K)

The exergy of destruction, \dot X_{dest}, is given as follows;

\dot X_{dest} = T₀ × \dot S_{gen} = T₀ × \dot m × (s₄ + s₂ - s₁ - s₃)

\dot X_{dest} = T₀ × \dot W×(s₄ + s₂ - s₁ - s₃)/(h₁ + h₃ - h₂ - h₄)

∴ \dot X_{dest} = 298.15 × 5000 × (7.563 + 6.958 - 6.727 - 7.434)/(3399 + 3468 - 3138  - 2554.49) ≈ 456.93 kW

The exergy of destruction ≈ 456.93 kW

2) The reversible power output, \dot W_{rev} = \dot W_{} + \dot X_{dest} ≈ 5000 + 456.93 kW = 5456.93 kW

The reversible power output ≈ 5456.93 kW.

6 0
3 years ago
Plot the function for . Notice that the function has two vertical asymptotes. Plot the function by dividing the domain of x into
elena-s [515]
This is a very very difficult one for me, let me get back to you with the proper answer.
8 0
3 years ago
Instead of running blood through a single straight vessel for a distance of 2 mm, one mammalian species uses an array of 100 tin
Marina CMI [18]

Solution:

Given that :

Volume flow is, $Q_1 = 1000 \ mm^3/s$

So, $Q_2= \frac{1000}{100}=10 \ mm^3/s$

Therefore, the equation of a single straight vessel is given by

$F_{f_1}=\frac{8flQ_1^2}{\pi^2gd_1^5}$    ......................(i)

So there are 100 similar parallel pipes of the same cross section. Therefore, the equation for the area is

$\frac{\pi d_1^2}{4}=1000 \times\frac{\pi d_2^2}{4} $

or $d_1=10 \ d_2$

Now for parallel pipes

$H_{f_2}= (H_{f_2})_1= (H_{f_2})_2= .... = = (H_{f_2})_{10}=\frac{8flQ_2^2}{\pi^2 gd_2^5}$  ...........(ii)

Solving the equations (i) and (ii),

$\frac{H_{f_1}}{H_{f_2}}=\frac{\frac{8flQ_1^2}{\pi^2 gd_1^5}}{\frac{8flQ_2^2}{\pi^2 gd_2^5}}$

       $=\frac{Q_1^2}{Q_2^2}\times \frac{d_2^5}{d_1^5}$

       $=\frac{(1000)^2}{(10)^2}\times \frac{d_2^5}{(10d_2)^5}$

       $=\frac{10^6}{10^7}$

Therefore,

$\frac{H_{f_1}}{H_{f_2}}=\frac{1}{10}$

or $H_{f_2}=10 \ H_{f_1}$

Thus the answer is option A). 10

7 0
3 years ago
A 4-L pressure cooker has an operating pressure of 175 kPa. Initially, one-half of the volume is filled with liquid and the othe
vodomira [7]

Answer:

the highest rate of heat transfer allowed is 0.9306 kW

Explanation:

Given the data in the question;

Volume = 4L = 0.004 m³

V_f = V_g = 0.002 m³

Using Table ( saturated water - pressure table);

at pressure p = 175 kPa;

v_f = 0.001057 m³/kg

v_g = 1.0037 m³/kg

u_f = 486.82 kJ/kg

u_g 2524.5 kJ/kg

h_g = 2700.2 kJ/kg

So the initial mass of the water;

m₁ = V_f/v_f + V_g/v_g

we substitute

m₁ = 0.002/0.001057  + 0.002/1.0037

m₁ = 1.89414 kg

Now, the final mass will be;

m₂ = V/v_g

m₂ = 0.004 / 1.0037

m₂ = 0.003985 kg

Now, mass leaving the pressure cooker is;

m_{out = m₁ - m₂

m_{out = 1.89414  - 0.003985

m_{out = 1.890155 kg

so, Initial internal energy will be;

U₁ = m_fu_f + m_gu_g

U₁ = (V_f/v_f)u_f  + (V_g/v_g)u_g

we substitute

U₁ = (0.002/0.001057)(486.82)  + (0.002/1.0037)(2524.5)

U₁ = 921.135288 + 5.030387

U₁ = 926.165675 kJ

Now, using Energy balance;

E_{in -  E_{out = ΔE_{sys

QΔt - m_{outh_{out = m₂u₂ - U₁

QΔt - m_{outh_g = m₂u_g - U₁

given that time = 75 min = 75 × 60s = 4500 sec

so we substitute

Q(4500) - ( 1.890155 × 2700.2 ) = ( 0.003985 × 2524.5 ) - 926.165675

Q(4500) - 5103.7965 = 10.06013 - 926.165675

Q(4500) = 10.06013 - 926.165675 + 5103.7965

Q(4500) = 4187.690955

Q = 4187.690955 / 4500

Q = 0.9306 kW

Therefore, the highest rate of heat transfer allowed is 0.9306 kW

5 0
3 years ago
Other questions:
  • An air conditioner using refrigerant R-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycl
    12·1 answer
  • A rigid tank contains an ideal gas at 40°C that is being stirred by a paddle wheel. The paddle wheel does 240 kJ of work on the
    9·1 answer
  • If you are a government authority what extend will you modify the existing policy
    11·1 answer
  • A budding electronics hobbyist wants to make a simple 1.0-nF capacitor for tuning her crystal radio, using two sheets of aluminu
    10·1 answer
  • A completely mixed activated-sludge process is being designed for a wastewater flow of 10,000 m3/d (2.64 mgd) using the kinetics
    6·1 answer
  • A common rule of thumb for controller discretization is to have "6 samples per rise time" in order to achieve a reasonable appro
    9·1 answer
  • A lab technician is ordered to take a sample of your blood. As she inserts the needle, she says, "My, you have tough skin!" What
    14·1 answer
  • Which word from the passage best explains what the web in the passage symbolizes
    10·1 answer
  • 3.
    7·1 answer
  • 3. Sitúese en la época de los faraones en Egipto. Usted es el encargado de construir una de esas fabulosas pirámides que fueron
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!