The answer is 2.0 moles.
From their coefficients in the balanced chemical equation below for the reaction of tin dioxide with hydrogen gas to produce tin and water:
SnO2(s) + 2H2(g) ==>Sn(l) + 2H2O(g)
two moles of hydrogen gas is to produce one mole of tin. We use this mole ratio to compute for the number of moles of tin as:
moles of Sn = 4.0mol H2 (1mol Sn/2mol H2) = 2.0 mol
Answer:
P = 30.1 atm
Explanation:
Given data:
Temperature of vessel = 25°C
Volume of vessel = 10.00 L
Moles in vessel = A + B = 5.25 mol + 7.05 mol = 12.3 moles
Total pressure inside vessel = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will convert the temperature.
25+273 = 298 K
P = nRT/V
P = 12.3 mol × 0.0821 atm.L/ mol.K × 298 K / 10.00 L
P = 300.93 / 10.00 L
P = 30.1 atm
no it is not possible, because they both have the same number of valence electrons in each element. in a compound you are supposed to have two or more elements that have different numbers of valence electrons so when put together they for a compound.
Answer:
mass I hope can help this answer
Explanation:
keep on learning