Answer:
Rotational inertia of the object is given as

Explanation:
As we know that the acceleration of the object on inclined plane is given as

now we know that velocity at any instant of time is given as

now we know that if the graph between velocity and time is given then the slope of the graph will be same as acceleration
so here we have

now from the graph slope of the graph is given as




now rotational inertia is given as



Answer:
Explanation:
A physical quantity which can be completely described by the magnitude and direction both are called vector quantities. For example, displacement, velocity, etc.
A physical quantity which can be completely explained by the magnitude only is called scalar quantity. For example, mass, time, etc.
Sounds like the shingle/ball is thrown from the roof horizontally, so that the distance it travels <em>x</em> after time <em>t</em> horizontally is
<em>x</em> = (7.2 m/s) <em>t</em>
The object's height <em>y</em> at time <em>t</em> is
<em>y</em> = 9.4 m - 1/2 <em>gt</em>²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, and its vertical velocity is
<em>v</em> = -<em>gt</em>
(a) The object hits the ground when <em>y</em> = 0:
0 = 9.4 m - 1/2 <em>gt</em>²
<em>t</em>² = 2 * (9.4 m) / (9.80 m/s²)
<em>t</em> ≈ 1.92 s
at which time the object's vertical velocity is
<em>v</em> = -<em>g</em> (1.92 s) = -18.8 m/s ≈ -19 m/s
(b) See part (a); it takes the object about 1.9 s to reach the ground.
(c) The object travels a horizontal distance of
<em>x</em> = (7.2 m/s) * (1.92 s) ≈ 13.8 m ≈ 14 m
To solve this problem divide 60 by 4.6
The answer to this problem is 13 seconds.
Answer:
I THINK IT'S <em>D.</em><em>.</em><em>.</em><em>.</em>
<em>HOPE </em><em>SO</em>