Answer:

the answer is A.
Explanation:
Using the laws of newton:
∑F = ma
where ∑F is the sumatory of forces acting in the system, m the mass and a the acelertion of the system.
Then, if the block is moving with constant velocity, its aceleration is equal to 0, so:
∑F = m(0)
∑F = 0
It means that:
F -
= 0
where F is the force applied and
is the friction force. Replacing the value of F, we get:
310N -
= 0
Finally, solving for
:

Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules
Answer:
The distance from Witless to Machmer is 438.63 m.
Explanation:
Given that,
Machmer Hall is 400 m North and 180 m West of Witless.
We need to calculate the distance
Using Pythagorean theorem

Where,
=distance of Machmer Hall
=distance of Witless
Put the value into the formula


Hence, The distance from Witless to Machmer is 438.63 m.
If the object is in equilibrium that means that the sum of the forces on it is zero and the net force is zero. If none of the forces changes then the object continues in constant uniform motion. That means constant speed in a straight line.