1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
3 years ago
11

A puck of mass 0.70 kg approaches a second, identical puck that is stationary on frictionless ice. The initial speed of the movi

ng puck is 6.0 m/s. After the collision, one puck leaves with a speed v1 at 30° to the original line of motion. The second puck leaves with speed v2 at 60°. Calculate v1 and v2.
Physics
1 answer:
natali 33 [55]3 years ago
3 0

Answer:

  • v_1  =  \ 5.196 \frac{m}{s}
  • v_2 =  3 \frac{m}{s}

Explanation:

For this problem, we just need to remember conservation of momentum, as there are no external forces in the horizontal direction:

\vec{p}_i = \vec{p}_f

where the suffix i  means initial, and the suffix f means final.

The initial momentum will be:

\vec{p}_i = m_1 \ \vec{v}_{1_i} + m_2 \ \vec{v}_{2_i}

as the second puck is initially at rest:

\vec{v}_{2_i} = 0

Using the unit vector \vec{i} pointing in the original line of motion:

\vec{v}_{1_i} = 6.0 \frac{m}{s} \hat{i}

\vec{p}_i = 0.70 \ kg  \ 6.0 \frac{m}{s} \ \hat{i} + 0.70 \ kg \ 0

\vec{p}_i = 4.2 \ \frac{kg \ m}{s} \ \hat{i}

So:

\vec{p}_i =  4.2 \ \frac{kg \ m}{s} \ \hat{i} = \vec{p}_f

\vec{p}_f =  4.2 \ \frac{kg \ m}{s} \ \hat{i}

Knowing the magnitude and directions relative to the x axis, we can find Cartesian representation of the vectors using the formula

\ \vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )

So, our velocity vectors will be:

\vec{v}_{1_f} = v_1 \ ( \ cos(30 \°) \ , \ sin (30 \°) \ )

\vec{v}_{2_f} = v_2 \ ( \ cos(-60 \°) \ , \ sin (-60 \°) \ )

We got

\vec{p}_f = 0.7 \ kg \ \vec{v}_{1_f} + 0.7 \ kg \ \vec{v}_{2_f}

4.2 \ \frac{kg \ m}{s} \ \hat{i} = 0.7 \ kg \   v_1 \ ( \ cos(30 \°) \ , \ sin (30 \°) \ )  + 0.7 \ kg \ v_2 \ ( \ cos(-60 \°) \ , \ sin (-60 \°) \ )

So, we got the equations:

4.2 \ \frac{kg \ m}{s}  = 0.7 \ kg \   v_1 \  cos(30 \°) + 0.7 \ kg \ v_2 \  cos(-60 \°)

and

0  = 0.7 \ kg \   v_1 \  sin(30 \°) + 0.7 \ kg \ v_2 \  sin(-60 \°).

From the last one, we get:

0  = 0.7 \ kg \  ( v_1 \  sin(30 \°) +  \ v_2 \  sin(-60 \°) )

0  =  v_1 \  sin(30 \°) +  \ v_2 \  sin(-60 \°)

v_1 \  sin(30 \°) = -  \ v_2 \  sin(-60 \°)

v_1  =  \ v_2 \  \frac{sin(60 \°)}{ sin(30 \°) }

and, for the first one:

4.2 \ \frac{kg \ m}{s}  = 0.7 \ kg  \ (  v_1 \  cos(30 \°) + v_2 \  cos(60 \°) )

\frac{4.2 \ \frac{kg \ m}{s}}{ 0.7 \ kg} =    v_1 \  cos(30 \°) + v_2 \  cos(60 \°)

\frac{4.2 \ \frac{kg \ m}{s}}{ 0.7 \ kg} =    v_1 \  cos(30 \°) + v_2 \  cos(60 \°)

6 \ \frac{m}{s} =    (\ v_2 \  \frac{sin(60 \°)}{ sin(30 \°) } ) \  cos(30 \°) + v_2 \  cos(60 \°)

6 \ \frac{m}{s} = v_2     (\   \frac{sin(60 \°)}{ sin(30 \°) } ) \  cos(30 \°) +   cos(60 \°)

6 \ \frac{m}{s} = v_2  * 2

so:

v_2 = 6 \ \frac{m}{s} / 2 = 3 \frac{m}{s}

and

v_1  =  \ 3 \frac{m}{s}  \  \frac{sin(60 \°)}{ sin(30 \°) }

v_1  =  \ 5.196 \frac{m}{s}

You might be interested in
One student did an experiment on the rock cycle.
Nonamiya [84]
First, when the student added the layers of wax over each other, this became a representation of sedimentary rocks.

Then the student folded his/her palm and squeezed the layers of wax. This means that the student applied heat and pressure on the wax (sedimentary rocks)

Referring to the diagram below which represents the rock cycle, we will find that applying heat and pressure on sedimentary rocks would convert these rocks into metamorphic rocks.

Based on the above, the best choice would be:
<span>d. Heat and pressure can change sedimentary rocks into metamorphic rocks.</span>

7 0
3 years ago
Technology is the application of science to make products that are useful to people. True or False
alekssr [168]
False false false false
5 0
3 years ago
Read 2 more answers
A civil engineer must design a wheelchair-accessible ramp next to a set of steps leading up to a building. The height from the g
Westkost [7]

Answer:

A) B = 24 ft

B) H = 24.08 ft

C) M.A = 12.04

D) P = 13.7 lb

Explanation:

A)

Minimum allowable length of base of ramp can be found as follows:

Slope = H/B

where,

Slope = 1/12

H = Height of Ramp = 2 ft

B = Length of Base of Ramp = ?

Therefore,

1/12 = 2 ft/B

B = 2 ft * 12

<u>B = 24 ft</u>

B)

The length of the slope of ramp can be found by using pythagora's theorem:

L = √H² + B²

where,

H = Perpendicular = height = 2 ft

B = Base = Length of Base of Ramp = 24 ft

L = Hypotenuse = Length of Slope of Ramp = ?

Therefore,

H = √[(2 ft)² + (24 ft)²]

<u>H = 24.08 ft</u>

D)

The mechanical advantage of an inclined plane is given by the following formula:

M.A = L/H

M.A = 24.08 ft/2 ft

<u>M.A = 12.04</u>

D)

Another general formula for Mechanical Advantage is:

M.A = W/P

where,

W = Ideal Load = 165 lb

P = Ideal Effort Force = ?

Therefore,

12.04 = 165 lb/P

P = 165 lb/12.04

<u>P = 13.7 lb</u>

7 0
3 years ago
A swimmer bounces almost straight up from a diving board and falls vertically feet first into a pool.she starts with a speed of
garik1379 [7]

Answer:

a) 1.20227 seconds

b) 0.98674 m

c) 7.3942875 m/s

Explanation:

t = Time taken

u = Initial velocity = 4.4 m/s

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

v=u+at\\\Rightarrow 0=4.4-9.81\times t\\\Rightarrow \frac{-4.4}{-9.81}=t\\\Rightarrow t=0.44852\ s

s=ut+\frac{1}{2}at^2\\\Rightarrow s=4.4\times 0.44852+\frac{1}{2}\times -9.81\times 0.44852^2\\\Rightarrow s=0.98674\ m

b) Her highest height above the board is 0.98674 m

Total height she would fall is 0.98674+1.8 = 2.78674 m

s=ut+\frac{1}{2}at^2\\\Rightarrow 2.78674=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{2.78674\times 2}{9.81}}\\\Rightarrow t=0.75375\ s

a) Her feet are in the air for 0.75375+0.44852 = 1.20227 seconds

v=u+at\\\Rightarrow v=0+9.81\times 0.75375\\\Rightarrow v=7.3942875\ m/s

c) Her velocity when her feet hit the water is 7.3942875 m/s

3 0
3 years ago
HElP I NEED TO turn this in
Alexeev081 [22]
B student 2 because you add
8 0
3 years ago
Other questions:
  • A 25 N force at 60° is required to set a crate into motion on a floor. What is the value of the static friction?
    13·1 answer
  • You have a rock sample and analyze it for the presence of radioactive isotopes in order to determine when it was formed. You fin
    5·1 answer
  • What is the name of type of relationship that exists between wavelength and frequency ?
    6·1 answer
  • Help plz I’ll give you the brainlist
    7·1 answer
  • Porque al tomar agua y la dejo en mi boca no se baja? Curiosidad xd
    14·1 answer
  • Jennifer and Jamie have a class assignment to identify an example of climate change and an example of a change in weather. They
    10·1 answer
  • Which color lined on the graph shows the population reaching, but not surpassing, carring capacity?
    13·2 answers
  • If vector A =i+2j-k and vec A cross vec B =3i-j+5k. find vec B​​​
    9·1 answer
  • When does a magnet induce an electric current in a wire coil?
    9·1 answer
  • The student measured the extension for five different forces rather than just measuring the extension for one force. Suggest why
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!