Answer:
261.3 m/s
Explanation:
Mass of bullet=m=15 g=
1 kg=1000g
Mass of block=M=3 kg
d=0.086 m
Total mass =M+m=3+0.015=3.015 kg
K.E at the time strike=Gravitational potential energy at the end of swing

Using g=
Substitute the values




Velocity after collision=V=1.3 m/s
Velocity of block=v'=0
Using conservation law of momentum

Using the formula




Answer:
The student hears the wave that is transmitted by the desk
Explanation:
Mechanical waves need a material medium to be able to be transmitted, in the case of sound waves, one of the most common media is air, but it is also transmitted in other media in this case, stationery is transmitted.
The student hears the wave that is transmitted by the desk
The speed of the wave is proportional to the density of the material, so the wave that the student hears arrives much faster through the desk than through the air
Force can be exerted into an object with out it moving, but if you were to move the object due to force it would be considered work. (yes, you can exert force without having the object moving)
Explanation:
c. if the vector is oriented at 0° from the X -axis.
Answer:
F = 7,916,955.0N
Explanation:
According to newtons second law
Force = mass * acceleration
Given
mass = 52.0kg
distance S = 22.0m
time t = 17.0 ms = 0.017s
We need to get the acceleration first using the formula;
S = ut+ 1/2at²
22 = 0 + 1/2 a(0.017²)
22 = 0.0001445a
a = 22/0.0001445
a = 152,249.13m/s²
The magnitude of the average force exerted will be;
F = ma
F = 52 * 152,249.13
F = 7,916,955.0N