1) 333.6 C
In order to have breakdown, the electric field at the surface of the cloud must be equal to the breakdown electric field:

The electric field strength at the surface of a charged sphere is given by

where
is the vacuum permittivity
Q is the charge on the sphere
R is the radius of the sphere
Here we have a cloud of radius

So we can re-arrange the previous equation in order to find the charge on the cloud:

2)
excess electrons
The total charge of the cloud must be (in magnitude)
Q = 333.3 C
We know that one electron carries a charge of

The total charge is just given by the charge of each electron multiplied by the number of excess electrons in the cloud:

where
N is the number of excess electrons
Solving for N, we find:

Answer:
See below
Explanation:
Things generally expand when heated ....so <u>volume increases</u> while mass remains the same .....this will cause the value of density to decrease
The concepts used to solve this exercise are given through the calculation of distances (from the Moon to the earth and vice versa) as well as the gravitational potential energy.
By definition the gravitational potential energy is given by,

Where,
m = Mass of Moon
G = Gravitational Universal Constant
M = Mass of Ocean
r = Radius
First we calculate the mass through the ratio given by density.



PART A) Gravitational potential energy of the Moon–Pacific Ocean system when the Pacific is facing away from the Moon
Now we define the radius at the most distant point

Then the potential energy at this point would be,



PART B) when Earth has rotated so that the Pacific Ocean faces toward the Moon.
At the nearest point we perform the same as the previous process, we calculate the radius

The we calculate the Potential gravitational energy,



Answer:
17. h = l − l cos θ
18. 1.40 m
Explanation:
Let's call d the height of the triangle. We can then say:
h = l − d
Using trig, we can write d in terms of l and θ:
d = l cos θ
h = l − l cos θ
If l = 6 m and l cos θ = 40°:
h = 6 − 6 cos 40
h ≈ 1.40