Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy
Answer: 
Explanation:
The Compton Shift
in wavelength when the photons are scattered is given by the following equation:
(1)
Where:
is a constant whose value is given by
, being
the Planck constant,
the mass of the electron and
the speed of light in vacuum.
the angle between incident phhoton and the scatered photon.
We are told the maximum Compton shift in wavelength occurs when a photon isscattered through
:
(2)
(3)
Now, let's find the angle that will produce a fourth of this maximum value found in (3):
(4)
(5)
If we want
,
must be equal to 1:
(6)
Finding
:
Finally:
This is the scattering angle that will produce
The answer is B. One plate slides past another.
The San Andreas Fault in California and the Alpine Fault in New Zealand are examples of transform boundaries.
Hope this helps! :)