Answer:
Explanation:
From the question;
We will make assumptions of certain values since they are not given but the process to achieve the end result will be the same thing.
We are to calculate the following task, i.e. to determine the electric field at the distances:
a) at 4.75 cm
b) at 20.5 cm
c) at 125.0 cm
Given that:
the charge (q) = 33.3 nC/m
= 33.3 × 10⁻⁹ c/m
radius of rod = 5.75 cm
a) from the given information, we will realize that the distance lies inside the rod. Provided that there is no charge distribution inside the rod.
Then, the electric field will be zero.
b) The electric field formula 

E = 1461.95 N/C
c) The electric field E is calculated as:

E = 239.76 N/C
Answer:
Mass = 386 kg
Explanation:
<u><em>Density = Mass / Volume</em></u>
Mass = Density × Volume
Where D = 19300 kg/m³ , V = 0.02 m³
<em>Putting the given in the above formula</em>
Mass = 19300 × 0.02
Mass = 386 kg
Teddyber continue to move forward because Newton law 1. moving object continue to move until something external make it to stop. no seat belt on teddy ber so only dashboard can make her stop. same if people in car and no seatbelt.
The magnitude of the electric field will be the greatest at the point where it is closest,to its charges.
Yes ,there is a point where the field will be zero.
what is an electric field?
The region where an electrostatic force is experienced by a charged entity is known as the electric field at a point.
As per the principle of field lines and vectors,where the field lines are in a close manner together,the field will be strongest.However ,where the field lines are in a manner apart,the field will be the weakest.
As per the concept,the electric field will be the greatest at the point where it is closest to its charges.For like charges, the electric field will be zero closer to the smaller charge and will be along the line joining the two charges. For opposite charges of equal magnitude, there will not be any zero electric fields.
Thus,we can conclude that there will be a point where the electric field is zero
learn more about electric field from here: brainly.com/question/28197462
#SPJ4
Answer:
k = 
b = 
t = 
Solution:
As per the question:
Mass of the block, m = 1000 kg
Height, h = 10 m
Equilibrium position, x = 0.2 m
Now,
The velocity when the mass falls from a height of 10 m is given by the third eqn of motion:

where
u = initial velocity = 0
g = 10
Thus

Force on the mass is given by:
F = mg = 
Also, we know that the spring force is given by:
F = - kx
Thus

Now, to find the damping constant b, we know that:
F = - bv

Now,
Time required for the platform to get settled to 1 mm or 0.001 m is given by:
