The reason why there’s more genotypes than phenotypes is because like multiple genotypes are both the same.
Answer:
The sun would appear to move more slowly across Mercury's sky.
Explanation:
This is because, the time it takes to do one spin or revolution on Mercury is 176 days (which is its period), whereas, the time it takes to do one spin or revolution on the Earth is 1 day.
Since the angular speed ω = 2π/T where T = period
So on Mercury, T' = 176days = 176 days × 24 hr/day × 60 min/hr × 60 s/min = 15,206,400 s
So, ω' = 2π/T'
= 2π/15,206,400 s
= 4.132 × 10⁻⁷ rad/s
So on Earth, T" = 1 day = 1 day × 24 hr/day × 60 min/hr × 60 s/min = 86,400 s
So, ω" = 2π/T"
= 2π/86,400 s
= 7.272 × 10⁻⁵ rad/s
Since ω' = 4.132 × 10⁻⁷ rad/s << ω" = 7.272 × 10⁻⁵ rad/s, <u>the sun would appear to move more slowly across Mercury's sky.</u>
Answer:
A. Molarity will increase .
Explanation:
Molarity = moles of solute per litre of solution
= moles of solute / volume of solution
If evaporation occurs , volume of solution decreases and moles of solute remains constant . Hence denominator decreases and numerator remains constant .
Hence the molarity increases .
Answer:
see below
Explanation:
The rate constant is missing in question, but use C(final) = C(initial)e^-kt = 0.200M(e^-k·10). Fill in k and compute => remaining concentration of reactant
Answer:
See explanation
Explanation:
The magnitude of electronegativity difference between atoms in a bond determines whether that bond will be polar or not.
If the electronegativity difference between atoms in a bond is about 1.7, the bond is ionic. If the electronegativity difference is greater than 0.4 and less than 1.7, the bond will have a polar covalent character. Lastly, if the electronegativity difference between the bond is less than or equal to 0.4, the covalent bond is non polar.
The electronegativity difference between carbon and hydrogen is about 0.4 which corresponds to a nonpolar covalent bond hence the molecule is nonpolar.
The electronegativity difference between carbon and fluorine is about 1.5 indicating a highly polar bond. This gives CH3F an overall dipole moment thereby making the molecule polar.