Answer:
2.51 Angstroms
Explanation:
For a particle in a one dimensional box, the energy level, En, is given by the expression:
En = n²π² ħ² / 2ma²
where n is the energy level, ħ² is Planck constant divided into 2π, m is the mass of the electron ( 9.1 x 10⁻³¹ Kg ), and a is the length of the one dimensional box.
We can calculate the change in energy, ΔE, from n = 2 to n= 3 since we know the wavelength of the transition ( ΔE = h c/λ ) and then substitute this value for the expresion of the ΔE for a particle in a box and solve for the length a.
λ = 207 nm x 1 x 10⁻⁹ m/nm = 2.07 x 10⁻⁷ m ( SI units )
ΔE = 6.626 x 10⁻³⁴ J·s x 3 x 10⁸ m/s / 2.07 x 10⁻⁷ m
ΔE = 9.60 x 10⁻¹⁹ J
ΔE(2⇒3) = ( 3 - 2 ) x π² x ( 6.626 x 10⁻³⁴ J·s / 2π )² / ( 2 x 9.1 x 10⁻³¹ Kg x a² )
9.60 x 10⁻¹⁹ J = π² x( 6.626 x 10⁻³⁴ J·s / 2π )² / ( 2 x 9.1 x 10⁻³¹ Kg x a² )
⇒ a = 2.51 x 10⁻¹⁰ m
Converting to Angstroms:
a = 2.51 x 10⁻¹⁰ m x 1 x 10¹⁰ Angstrom / m = 2.51 Angstroms
Answer: Yes, two objects may have the same volume while having different masses. The object with a greater mass will be the one that contains more matter.
Explanation: Mass and volume are two different properties of matter. Mass is defined as the amount of matter that a body has. Volume is defined as the amount of space that a body occupies. Density is the property that relates mass with volume as
and is defined as the amount of matter that exists in a certain amount of space.
Because mass and volume are independent from each other, we can say that two objects can have different masses and have the same volume.
<u>For example</u>, imagine two identical containers that weigh the same and that are capable of containing a volume of 1 liter each. Then, one of the containers is filled with water, while the other one is filled with mercury. In this case the volume of the water and the volume of the mercury will be the same: 1 liter, however, if we weigh the containers again, we will find that the one that has mercury is heavier than the one that has water. This is due to the density of mercury being higher than the density of water. In other words, 1 liter of mercury provides more mass than the mass provided by 1 liter of water.
Then, according to the definition of mass, the object that contains more matter will be the one that has more mass, in the case of our example, that would be the liter of mercury.
Answer:
The pH of the solution is 2.56.
Explanation:
Given :
Concentration (c) = 0.40 M
Acid dissociation constant = 
The equilibrium reaction for dissociation of
(weak acid) is,

initially conc. c 0 0
At eqm.

Dissociation constant is given as:


By solving the terms, we get value of 

No we have to calculate the concentration of hydronium ion or hydrogen ion.
![[H^+]=c\alpha=0.4\times 0.00686832=0.002747 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%3D0.4%5Ctimes%200.00686832%3D0.002747%20M)
Now we have to calculate the pH.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Therefore, the pH of the solution is, 2.56.
Answer:
A voltaic cell
Explanation:
A voltaic cell is a device which converts chemical energy to electrical energy. The chemical reactions that take place inside the cell causes electrons to flow from anode to cathode hence, electricity is produced. A simple voltaic cell is made by placing two different metals in contact with an electrolyte separated by a salt bridge. The cathode is the negative electrode while the anode is the positive electrode. It is also called a galvanic cell.
In a voltaic cell having a copper/copper solution half cell, reduction occurs at the cathode. Hence, at the cathode copper II ions accept two electrons and become reduced to ordinary metallic copper. This causes the blue colour of the solution to become discharged (fade) as the cell continues to function.
Answer:
The number of moles =

The number of molecules =

Explanation:
Volume of the sphere is given by :

here, r = radius of the sphere


Radius = 3 mm
r = 3 mm
1 mm = 0.01 dm (1 millimeter = 0.001 decimeter)
3 mm = 3 x 0.01 dm = 0.03 dm
r = 0.03 dm
<em>("volume must be in dm^3 , this is the reason radius is changed into dm"</em>
<em>"this is done because 1 dm^3 = 1 liter and concentration is always measured in liters")</em>



(1 L = 1 dm3)
Now, concentration "C"=
The concentration is given by the formula :

This is also written as,

moles
One mole of the substance contain "Na"(= Avogadro number of molecules)
So, "n" mole of substance contain =( n x Na )

Molecules =

molecules