Answer:
1.53x10^22 atoms of Au
Explanation:
To find the atoms of gold we need first, to convert the mass of gold to moles using molar mass of gold (196.97g/mol). Then, these moles must be converted to number of atoms based on definition of moles (1 mole = 6.022x10²³ atoms).
<em>Moles Au:</em>
5.00g Au * (1mol / 196.97g) = 0.0254 moles of Au
<em>Atoms of Au:</em>
0.0254 moles * (6.022x10²³ atoms / 1 mole) =
<h3>1.53x10^22 atoms of Au</h3>
Because it represents 2 atoms of carbon not 2 molecules of carbon
Although the models are not provided, I was able to find them and the beakers with solid present in them are:
1C
2A
2C
3A
3C
This is determined by the fact that the beakers all have a piece of closely packed substance laying at the bottom. This closely packed lattice is characteristic of solid substances, and the fact that they exist in the solution in the solid states indicates that they are insoluble.
Answer: 2.17 x 10^23 molecules
Explanation:
1mole of H2O contains 6.02x10^23 molecules.
Therefore 0.360mole of H2O will contain = 0.36 x 6.02x10^23 = 2.17 x 10^23 molecules