1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
3 years ago
11

Please someone help mee

Chemistry
1 answer:
Nikitich [7]3 years ago
8 0

Answer:

13.9kj/mol

Explanation:

h = 891 -(393.5 +2*241.8)=1768.1=13.9kj/mol

You might be interested in
Calculate the solubility of hydrogen in water at an atmospheric pressure of 0.380 atm (a typical value at high altitude).
Pani-rosa [81]

The question is incomplete, here is the complete question:

Calculate the solubility of hydrogen in water at an atmospheric pressure of 0.380 atm (a typical value at high altitude).

Atmospheric Gas         Mole Fraction      kH mol/(L*atm)

           N_2                         7.81\times 10^{-1}         6.70\times 10^{-4}

           O_2                         2.10\times 10^{-1}        1.30\times 10^{-3}

           Ar                          9.34\times 10^{-3}        1.40\times 10^{-3}

          CO_2                        3.33\times 10^{-4}        3.50\times 10^{-2}

          CH_4                       2.00\times 10^{-6}         1.40\times 10^{-3}

          H_2                          5.00\times 10^{-7}         7.80\times 10^{-4}

<u>Answer:</u> The solubility of hydrogen gas in water at given atmospheric pressure is 1.48\times 10^{-10}M

<u>Explanation:</u>

To calculate the partial pressure of hydrogen gas, we use the equation given by Raoult's law, which is:

p_{\text{hydrogen gas}}=p_T\times \chi_{\text{hydrogen gas}}

where,

p_A = partial pressure of hydrogen gas = ?

p_T = total pressure = 0.380 atm

\chi_A = mole fraction of hydrogen gas = 5.00\times 10^{-7}

Putting values in above equation, we get:

p_{\text{hydrogen gas}}=0.380\times 5.00\times 10^{-7}\\\\p_{\text{hydrogen gas}}=1.9\times 10^{-7}atm

To calculate the molar solubility, we use the equation given by Henry's law, which is:

C_{H_2}=K_H\times p_{H_2}

where,

K_H = Henry's constant = 7.80\times 10^{-4}mol/L.atm

p_{H_2} = partial pressure of hydrogen gas = 1.9\times 10^{-7}atm

Putting values in above equation, we get:

C_{H_2}=7.80\times 10^{-4}mol/L.atm\times 1.9\times 10^{-7}atm\\\\C_{CO_2}=1.48\times 10^{-10}M

Hence, the solubility of hydrogen gas in water at given atmospheric pressure is 1.48\times 10^{-10}M

4 0
3 years ago
Which statement describes the energy changes that occur as bonds are broken and formed during a chemical reaction? 1.Energy is a
Snowcat [4.5K]

Answer:

C

Explanation:

Br + Br-> Br2 (covalent bond)

bond formation releases energy, as the Br's are in a lower energy state like Br2

6 0
3 years ago
The carbon-14 content of a wooden harpoon handle found in an Inuit archaeological site was found to be 61.9% of the carbon-14 co
astraxan [27]

Answer:

3,964 years.

Explanation:

  • It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
  • Half-life time is the time needed for the reactants to be in its half concentration.
  • If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
  • Also, it is clear that in first order decay the half-life time is independent of the initial concentration.

  • The half-life of the element is 5,730 years.

  • For, first order reactions:

<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>

Where, k is the rate constant of the reaction.

t1/2 is the half-life of the reaction.

∴ k =0.693/(t1/2) = 0.693/(5,730 years) = 1.21 x 10⁻⁴ year⁻¹.

  • Also, we have the integral law of first order reaction:

<em>kt = ln([A₀]/[A]),</em>

where, k is the rate constant of the reaction (k = 1.21 x 10⁻⁴ year⁻¹).

t is the time of the reaction (t = ??? year).

[A₀] is the initial concentration of the sample ([A₀] = 100%).

[A] is the remaining concentration of the sample ([A] = 61.9%).

∴ t = (1/k) ln([A₀]/[A]) = (1/1.21 x 10⁻⁴ year⁻¹) ln(100%/61.9%) = 3,964 years.

7 0
4 years ago
Natural atom of the same element may have the same _________?
Minchanka [31]

Answer:B

Explanation:

4 0
3 years ago
Read 2 more answers
A 25.0 mL aliquot of 0.0680 M EDTA was added to a 59.0 mL solution containing an unknown concentration of V3 . All of the V3 pre
givi [52]

Answer:

\mathbf{0.02 M}

Explanation:

\text{So, from the given question:}

\text{EDTA will make complex with} V^{+3} \text{and the remaining EDTA will react with }Ga^{+3}

\text{Hence, the total concentration of} V^{+3} & Ga^{+3} \text{will be equivalent to EDTA concentration.}

V_{EDTA} = 25 \ mL

V_{V^{+3}} = 59.0 \ mL

V_{Ga^{+3}} = 13.0 \ mL

M_{EDTA} = 0.0680 \ M

M_{V^{+3}} = ???(unknown)

M_{Ga^{+3}} = 0.0400 \ M

V^{+3} + EDTA \to V[EDTA] + EDTA(Excess)  \to^{CoA} \ Ga[EDTA] _{complex}

M_{EDTA} \times V_{EDTA} = ( V_{V^+3}\times M_{V^{+3}}+ V_{Ga^{+3} }\times M_{Ga^{+3}}})

0.0680 \times 25 = (59\times x + 13 \times 0.040) \\ \\ 1.7 = 59x + 0.52\\ \\ 1.7 - 0.52 = 59x \\ \\ 59x = 1.18

x = \dfrac{1.18}{59}

\mathbf{x =0.02 \ M }

5 0
3 years ago
Other questions:
  • What's the name of the process that occurs as the dry ice undergoes a phase change in the flask
    8·1 answer
  • For the reaction 2Fe + O2 = 2FeO, how many grams of iron oxide are produced from 8.00 mol of iron? when o2 is an excess
    8·1 answer
  • Assume that Aluminum and Silver Sulfide are the starting substances (reactants) in the reaction: a. Write a balanced chemical eq
    15·1 answer
  • The first-order rate constant for the decomposition of N2O5:
    6·1 answer
  • Which temperature most likely corresponds to the asthenosphere?
    8·2 answers
  • The Nusselt number is defined as Nu = _____ where Lc is the characteristic length of the surface, h is the convective heat trans
    11·1 answer
  • Why is the Hubble telescope located in space? *
    6·1 answer
  • 0.30 kg cart moves on an air track at 1.2 m/s.It collides with and sticks to another cart of mass 500 g,which was stationary bef
    14·1 answer
  • The Statue of Liberty changing from Copper to Green is an example of...
    10·1 answer
  • 1. Find the masses of the following amounts.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!