Answer:
A concentrated acid is an acid which is in either pure form or has a high concentration. Laboratory type sulfuric acid (about 98% by weight) is a concentrated (and strong) acid. A dilute acid is that in which the concentration of the water mixed in the acid is higher than the concentration of the acid itself.
Explanation:
Concentrated acid - Those acids which are pure or have very high concentration in water are called as concentrated acids. For example concentrated Hydrochloric acid (HCl) and concentrated Sulphuric acid are examples of concentrated acids.
Answer:
Explanation:
The major difference between pure and applied chemistry is the purpose and intent of the study.
Pure chemistry deals with the study of matter, matter transformations, and interactions between the different materials of the world, for only the sake of gaining empirical knowledge about the various substances that exist in the world. It does not really seek to apply this knowledge to do anything industrial.
Applied chemistry is the study of chemistry with the aim of utilizing this knowledge to solve the various problems that man faces. This approach of study is not for knowledge sake alone, rather it is for industrial application
Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
Answer:
1.138158E24 atoms or 1.14 x 10^24 atoms
Explanation:
To find atoms/particles from moles you just want to convert using avogadro's number which is 6.022 x 10^23
1.89 mol x 6.022 • 10^23
———— = 1.138158E24 atoms
1 mol
so 1.138158E24 atoms or 1.14 x 10^24 for scientific notation
hope this helps :)