The partial pressure of hydrogen is 0.31 atm
calculation
find the number of hydrogen moles the container, that is
25/100 x 6.4 =1.6 moles of hydrogen
find the partial pressure for hydrogen in 1.6 moles
that is 6.4 moles= 1.24 atm
1.6 moles= ?
by cross multiplication
1.6moles x1.24 atm/ 6.4 moles= 0.31 atm
Answer:
hope it helps.
<h3>stay safe healthy and happy.<u>.</u><u>.</u></h3>
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
P₄O₁₀ + 6H₂O → 4H₃PO₄
The equation shows us that the molar ratio of
P₄O₁₀ : 6H₂O = 1:6
We also know that one mole of a substance contains 6.02 x 10²³ particles. We can use this to calculate the moles of water.
moles(H₂O) = (5.51 x 10²³) / (6.02 x 10²³)
= 0.92 mole
That means moles of P₄O₁₀ = 0.92 / 6
= 0.15
Each mole of P₄O₁₀ contains 4 moles of P.
moles(P) = 4 x 0.15 = 0.6 mol
Mr of P = 207 grams per mol
Mass of P = 207 x 0.6
= 124.2 grams