Each element<span> can usually be classified as a metal or a non-metal based on their ... They are usually </span>dull<span>and therefore show no metallic </span>luster<span> and they do not reflect ... </span>Dull<span>, Brittle solids; Little or no metallic </span>luster<span>; </span>High<span> ionization energies; </span>High<span> ...</span>
Oxygen had 6 valence electrons
Answer:
Yes it would
Explanation: Well it kinda depend on the voltage and how the battery has been in use or based on the condition
Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.