That they travel in a vacuum. All other waves require a medium in which they wave.
<span>You experience physiological changes and a feeling of fear simultaneously. Hope this helped!</span>
The direction of electric field by the charge in and on the metal block will be along the direction line 5 as given in question.
<h3>
How to determine electric field direction in a metal block?</h3>
The charge always remain on outer surface of metal and inside the metal block, the net electric field is zero. But due to dipole there is an electric field at the center of metal block i.e. at point R along direction line 1.
Now, to make make the net electric field zero at center, the electric field by the charge in and on the metal block must be equal in magnitude to that of electric field due to dipole at point R and in opposite direction to that of the net electric field at at R due to dipole.
The electric field by the charge in and on the metal block will be making 180° angle to the electric field due to dipole at point R.
Hence the direction of electric field by the charge in and on the metal block will be along the direction line 5 as given in question.
To know more about electric field, click on brainly.com/question/11509296
#SPJ4
Answer:
<u>The car's average speed is 32 kilometers per hour</u>
Explanation:
1. Let's review the information given to us to answer the question correctly:
First two hours = 60 kilometers
Next two hours = 68 kilometers
2. What is the car's average speed?
Total distance traveled by the car = 60 + 68
Total distance traveled by the car = 128
Total time of travel = 2 + 2 hours
Total time of travel = 4 hours
Average speed = Total distance/Total time
Replacing with the real values, we have:
Average speed = 128/4
<u>Average speed = 32 kilometers per hour</u>