Answer:
the observed frequency will reduce but the wavelength will increase
Explanation:
As we know
fo = fs (v/(v-vs))
fo = observed frequency
vs = velocity of source
As per this equation,
When an observer moves away from the stationary source, the observed frequency reduces. Since the observer in the balloon is moving away from the source which itself is moving in opposite direction, the observed frequency will reduce.
Since wavelength = V/fs . The source frequency is unchanged but the velocity is increasing as it is moving in downward direction. Hence, the wavelength will increase
Action and reaction are equal in magnitude and opposite direction by they don't balance each other because they don't occur on the same body. Action is involved on one body and reaction is involved on another body.
Hope you understood...
Answer:
B on Edge 2020
She can change the arrows so they show current traveling in opposite directions on the sides of the loop.
Explanation:
Just took the test haha
<span>Answer:
Spherical Distribution
Feedback: Correct
The stars in the halo component have highly-inclined random orbits that orbit the center of our Galaxy. The stars within the halo would therefore make up a spherical distribution of stars surrounding the center of the Galaxy. In comparison, the disk stars move in elliptical orbits, which are nearly circular and are confined to the disk of the Galaxy. Disk stars therefore have very small inclinations and do not move above or below the plane of the Galactic disk.</span>