Answer:
3. Fructose
Explanation:
Fructose is a sugar found naturally in fruits, fruit juices, some vegetables and honey.
The radiation dose absorbed by a person is measured using the conventional unit rad or the SI unit gray. The biological risk of exposure to radiation is measured using the conventional unit rem or the SI unit sievert.
I hope this helps!
Answer:
160 years.
Explanation:
From the question given above, the following data were obtained:
Initial count rate (Cᵢ) = 400 count/min
Half-life (t½) = 40 years
Final count rate (Cբ) = 25 count/min
Time (t) =?
Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:
Initial count rate (Cᵢ) = 400 count/min
Final count rate (Cբ) = 25 count/min
Number of half-lives (n) =?
Cբ = 1/2ⁿ × Cᵢ
25 = 1/2ⁿ × 400
Cross multiply
25 × 2ⁿ = 400
Divide both side by 25
2ⁿ = 400/25
2ⁿ = 16
Express 16 in index form with 2 as the base
2ⁿ = 2⁴
n = 4
Thus, 4 half-lives has elapsed.
Finally, we shall determine the time taken for the radioactive material to decay to the rate of 25 counts per minute. This can be obtained as follow:
Half-life (t½) = 40 years
Number of half-lives (n) = 4
Time (t) =?
n = t / t½
4 = t / 40
Cross multiply
t = 4 × 40
t = 160 years.
Thus, it will take 160 years for the radioactive material to decay to the rate of 25 counts per minute.
A 15.75-g<span> piece of iron absorbs 1086.75 </span>joules<span> of </span>heat<span> energy, and its ... </span>How many joules<span> of </span>heat<span> are </span>needed<span> to raise the temperature of 10.0 </span>g<span> of </span>aluminum<span> from 22°C to 55°C, if the specific </span>heat<span> of </span>aluminum<span> is o.90 J/</span>g<span>”C2 .</span>
John weighs 200 pounds.
In order to lift himself up to a higher place, he has to exert force of 200 lbs.
The stairs to the balcony are 20-ft high.
In order to lift himself to the balcony, John has to do
(20 ft) x (200 pounds) = 4,000 foot-pounds of work.
If he does it in 6.2 seconds, his RATE of doing work is
(4,000 foot-pounds) / (6.2 seconds) = 645.2 foot-pounds per second.
The rate of doing work is called "power".
(If we were working in the metric system (with SI units),
the force would be in "newtons", the distance would be in "meters",
1 newton-meter of work would be 1 "joule" of work, and
1 joule of work per second would be 1 "watt".
Too bad we're not working with metric units.)
So back to our problem.
John has to do 4,000 foot-pounds of work to lift himself up to the balcony,
and he's able to do it at the rate of 645.2 foot-pounds per second.
Well, 550 foot-pounds per second is called 1 "horsepower".
So as John runs up the steps to the balcony, he's doing the work
at the rate of
(645.2 foot-pounds/second) / (550 ft-lbs/sec per HP)
= 1.173 Horsepower. GO JOHN !
(I'll betcha he needs a shower after he does THAT 3 times.)
_______________________________________________
Oh my gosh ! Look at #26 ! There are the metric units I was talking about.
Do you need #26 ?
I'll give you the answers, but I won't go through the explanation,
because I'm doing all this for only 5 points.
a). 5
b). 750 Joules
c). 800 Joules
d). 93.75%
You're welcome.
And #27 is 0.667 m/s .