Marie Curie discovered polonium and radium. Hope this helps:))) Please, mark Brainliest!
Answer:
DUPLET RULE: The tendency of an atom to acquire an outer most shell of two electrons is called duplet rule. OCTET RULE: The tendency of an atom to acquire an outermost shell of eight electrons is called the octet rule.
Answer:
a. 1.78x10⁻³ = Ka
2.75 = pKa
b. It is irrelevant.
Explanation:
a. The neutralization of a weak acid, HA, with a base can help to find Ka of the acid.
Equilibrium is:
HA ⇄ H⁺ + A⁻
And Ka is defined as:
Ka = [H⁺] [A⁻] / [HA]
The HA reacts with the base, XOH, thus:
HA + XOH → H₂O + A⁻ + X⁺
As you require 26.0mL of the base to consume all HA, if you add 13mL, the moles of HA will be the half of the initial moles and, the other half, will be A⁻
That means:
[HA] = [A⁻]
It is possible to obtain pKa from H-H equation (Equation used to find pH of a buffer), thus:
pH = pKa + log₁₀ [A⁻] / [HA]
Replacing:
2.75 = pKa + log₁₀ [A⁻] / [HA]
As [HA] = [A⁻]
2.75 = pKa + log₁₀ 1
<h3>2.75 = pKa</h3>
Knowing pKa = -log Ka
2.75 = -log Ka
10^-2.75 = Ka
<h3>1.78x10⁻³ = Ka</h3>
b. As you can see, the initial concentration of the acid was not necessary. The only thing you must know is that in the half of the titration, [HA] = [A⁻]. Thus, the initial concentration of the acid doesn't affect the initial calculation.
The answer to your question is full
Answer is: the approximate freezing point of a 0.10 m NaCl solution is -2x°C.
V<span>an't
Hoff factor (i) for NaCl solution is approximately 2.
</span>Van't Hoff factor (i) for glucose solution is 1.<span>
Change in freezing point from pure solvent to
solution: ΔT = i · Kf · m.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
m - molality, moles of solute per
kilogram of solvent.
</span>Kf and molality for this two solutions are the same, but Van't Hoff factor for sodium chloride is twice bigger, so freezing point is twice bigger.