Answer:
Thermal decomposition or cracking
Explanation:
Petroleum is a mixture of hydrocarbons which are usually formed naturally. Petroleum undergo a host of chemical reactions. One of such is thermal decomposition or cracking.
Cracking is used in the petroleum industry to covert heavy fractions to more useful lighter ones.
When petroleum is subjected to high temperature and pressure, and in the presence of catalyst, the long chain type of petroleum will decompose into more useful smaller and lighter molecules.
Example is given below:
C₁₅H₃₂ → C₈H₁₈ + C₃H₆ + 2C₂H₄
B. Copper since the rest of the choices are compounds. Copper is an element.
<span><span>When water vapor condenses, 2260 joules/gram heat energy will be released into the atmosphere.
To add, </span>heat energy<span> <span>(or </span>thermal energy<span> or simply </span>heat) is defined as a form of energy<span> which transfers among particles in a substance (or system) by means of kinetic </span>energy<span> of those particles. In other words, under kinetic theory, the </span>heat<span> is transferred by particles bouncing into each other.</span></span></span>
A mole is equal to 6.02x10^23, so one mole of H2O has 6.02x10^23 water molecules. To get how many of them are in 6 moles you need to multiple it by six:
(6.02x10^23)x6= 3.612x10^24
So, there’s 3.612x10^24 water molecules in 6 moles of water
<u> </u> The pH of 0.035 M aqueous aspirin is 2.48
<u>Explanation:</u>
We are given:
Concentration of aspirin = 0.035 M
The chemical equation for the dissociation of aspirin (acetylsalicylic acid) follows:

<u>Initial:</u> 0.035
<u>At eqllm:</u> 0.035-x x x
The expression of
for above equation follows:
![K_a=\frac{[C_9H_7O_4^-][H^+]}{[HC_9H_7O_4]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_9H_7O_4%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHC_9H_7O_4%5D%7D)
We are given:

Putting values in above expression, we get:

Neglecting the value of x = -0.0037 because concentration cannot be negative
So, concentration of
= x = 0.0033 M
- To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
= 0.0033 M
Putting values in above equation, we get:

Hence, the pH of 0.035 M aqueous aspirin is 2.48