So here we are given that the the velocity of the proton ( V ) is 2.0 ×
meters / second, with a magnetic field of strength 5.5 ×
tesla. If they each form a right angle, they are hence perpendicular to one another, such that ....
F = q( V × B ),
F = q v B( sin ∅ ),
F = q v B( sin( 90 ) )
.... they form the following formula. Let's go through each of the variables in our formula here -
{ F = Magnetic Force ( which has to be calculated ), q = charge of proton (has charge of 1.602 ×
coulombs ), B = magnetic field }
All we have to do now is plug and chug,
F = ( 1.602 ×
)( 2.0 ×
)( 5.5 ×
) = ( About ) 1.8 ×
Newtons
Explanation:
T = 409.5 K, P = 1.50 atm: V = 22.4 L The ideal gas law is: PV = nRT where. P = pressure. V = volume n = number of moles.
Answer:
<h2>A. Mercury's orbit is shorter than Earth</h2>
Answer : The energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Explanation :
First we have to calculate the moles of n-butane.

Given:
Molar mass of n-butane = 58.12 g/mole
Mass of n-butane = 58.3 g
Now put all the given values in the above expression, we get:

Now we have to calculate the energy required.

where,
Q = energy required
= enthalpy of fusion of solid n-butane = 4.66 kJ/mol
n = moles = 1.00 mol
Now put all the given values in the above expression, we get:

Thus, the energy required to melt 58.3 g of solid n-butane is, 4.66 kJ