Answer:
I believe the answer would be A. point x
If the object is moving in a straight line at a constant speed, then that's
the definition of zero acceleration. It can only happen when the sum of
all forces (the 'net' force) on the object is zero.
And it doesn't matter what the object's mass is. That argument is true
for specks of dust, battleships, rocks, stars, rock-stars, planets, and
everything in between.
The string moves to the right, as it restores its original position with the median plane of the bow. As a result, the string "pulls" on the arrow with a force F2. 2. The tip of the arrow T moves slightly to the left.
pls thank me and brainliest me
Answer:
Explanation:
a ) Let let the frictional force needed be F
Work done by frictional force = kinetic energy of car
F x 107 = 1/2 x 1400 x 35²
F = 8014 N
b )
maximum possible static friction
= μ mg
where μ is coefficient of static friction
= .5 x 1400 x 9.8
= 6860 N
c )
work done by friction for μ = .4
= .4 x 1400 x 9.8 x 107
= 587216 J
Initial Kinetic energy
= .5 x 1400 x 35 x 35
= 857500 J
Kinetic energy at the at of collision
= 857500 - 587216
= 270284 J
So , if v be the velocity at the time of collision
1/2 mv² = 270284
v = 19.65 m /s
d ) centripetal force required
= mv₀² / d which will be provided by frictional force
= (1400 x 35 x 35) / 107
= 16028 N
Maximum frictional force possible
= μmg
= .5 x 1400 x 9.8
= 6860 N
So this is not possible.