Answer:
1. The automobile is traveling due east and is speeding up.
2. The car is traveling due east and is is slowing down.
3. The automobile is traveling due east at a constant speed.
4. The car is traveling due west and is slowing down.
5. The automobile is traveling due west and is speeding up.
6. The automobile is traveling due west at a constant speed.
7. The automobile is accelerating due east from rest.
8. The automobile is accelerating due west from rest.
Explanation:
The key to understanding this is:
When the acceleration and initial velocity of the automobile have the same sign (positive or negative) then the automobile is speeding up. Explained further, if acceleration and the initial velocity are both positive or they are both negative the automobile is speeding up but whenever they have opposite signs (that is acceleration is positive and initial velocity is negative or vice versa) the automobile is slowing down. When the acceleration is zero the automobile is maintaining a unform motion at a constant speed (the speed is not changing with time). The + or - sign indicates the direction of travel. In this case east is + and west is -. It is my pleasure answering this question. I hope you find it helpful. Thank you.
The primary method of heat transfer when ironing clothes is conduction. The iron heats up very quickly because it is metal, which is a good conductor.
Answer:
true
Explanation:
when a ray of light travels from a less denser medium to a denser medium it tends to bend towards the normal.
Answer:
Current flowing in the wire is 1680 A
Explanation:
It is given length of wire l = 3.5 m
Mass of the wire m = 0.03 kg
Magnetic field B = 0.00005 Tesla
Acceleration due to gravity 
Mg force acting on the wire will be equal to Lorentz force acting on the wire.
Therefore 


Therefore current flowing in the wire is 1680 A
Answer:
41.2 m.
Explanation:
It takes half the time that is (5.8/2) = 2.9 seconds, for the ball to reach its apex.
Given:
S = 83 m
t = 5.8 s
vf = 0 m/s
a = - g
= - 9.81 m/s^2
Equations of motion:
i. vf = vi + a * t
ii. h = vi * t + 1/2 (a * t²)
Using the i. equation of motion:
0 m/s = vi - (9.8 m/s²) (2.9 sec)
vi = 28.4 m/s.
Using the ii. equation of motion:
h = (28.4 * 2.9 ) - 1/2 (9.8 * (2.9)²)
= 82.4 - 41.2
= 41.2 m.