Answer:
Option"B" is correct.
Explanation:
when a body move with constant velocity then acceleration is zero.
Answer: E = 0.85
Therefore the efficiency is: E = 0.85 or 85%
Explanation:
The efficiency (e) of a Carnot engine is defined as the ratio of the work (W) done by the engine to the input heat QH
E = W/QH.
W=QH – QC,
Where Qc is the output heat.
That is,
E=1 - Qc/QH
E =1 - Tc/TH
where Tc for a temperature of the cold reservoir and TH for a temperature of the hot reservoir.
Note: The unit of temperature must be in Kelvin.
Tc = 300K
TH = 2000K
Substituting the values of E, we have;
E = 1 - 300K/2000K
E = 1 - 0.15
E = 0.85
Therefore the efficiency is: E = 0.85 or 85%
-- On Earth, 1 kg of anything weighs 9.81 Newtons (2.205 pounds). It doesn't matter what substance comprises the kilogram.
-- Although their weights are identical, any mass of feathers occupies more volume than the same mass of iron, no matter where they happen to be located.
-- Iron is more dense than feathers, and more dense than a lot of other substances as well, too.
Coriolis effect that's due to the motion of the Earth
Answer:
x = 6.94 m
Explanation:
For this exercise we can find the speed at the bottom of the ramp using energy conservation
Starting point. Higher
Em₀ = K + U = ½ m v₀² + m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
½ m v₀² + m g h = ½ m v²
v² = v₀² + 2 g h
Let's calculate
v = √(1.23² + 2 9.8 1.69)
v = 5.89 m / s
In the horizontal part we can use the relationship between work and the variation of kinetic energy
W = ΔK
-fr x = 0- ½ m v²
Newton's second law
N- W = 0
The equation for the friction is
fr = μ N
fr = μ m g
We replace
μ m g x = ½ m v²
x = v² / 2μ g
Let's calculate
x = 5.89² / (2 0.255 9.8)
x = 6.94 m