1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mote1985 [20]
3 years ago
5

Which of the following scenerios fits all of the criteria for the two-source interference equations to be valid?

Physics
1 answer:
vekshin13 years ago
8 0

Answer:

answer the correct  is B

Explanation:

For the interference phenomenon to occur, some conditions must be met.

* You must have a light in phase and coherent, for this you can for a light from an incandescent source through a single slit, the light that comes out is coherent

* This light must strike two slits

* the light that passes through the slits must hit a distant screen and be able to see the phenomenon of constructive interference

when examining the different answer the correct one is B

You might be interested in
According to Archimedes' Principle, what condition has to be met for an object to float?you will get branliest
MissTica

Explanation:

The buoyant force must be greater to float, otherwise it would sink, its like a barrel in water, the more water weight in it the more it sinks, the more air weight the more it rises.

3 0
2 years ago
Calculate the orbital period for Jupiter's moon Io, which orbits 4.22×10^5km from the planet's center (M=1.9×10^27kg) .
Verdich [7]

According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>



In other words, this law states a relation between the orbital period T of a body (moon, planet, satellite) orbiting a greater body in space with the size a of its orbit.



This Law is originally expressed as follows:



<h2>T^{2} =\frac{4\pi^{2}}{GM}a^{3}    (1) </h2>

Where;


G is the Gravitational Constant and its value is 6.674(10^{-11})\frac{m^{3}}{kgs^{2}}



M=1.9(10^{27})kg is the mass of Jupiter


a=4.22(10^{5})km=4.22(10^{8})m  is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)



If we want to find the period, we have to express equation (1) as written below and substitute all the values:



<h2>T=\sqrt{\frac{4\pi^{2}}{GM}a^{3}}    (2) </h2>

T=\sqrt{\frac{4\pi^{2}}{6.674(10^{-11})\frac{m^{3}}{kgs^{2}}1.9(10^{27})kg}(4.22(10^{8})m)^{3}}    



T=\sqrt{\frac{2.966(10^{27})m^{3}}{1.268(10^{17})m^{3}/s^{2}}}    



T=\sqrt{2.339(10^{10})s^{2}}    



Then:


<h2>T=152938.0934s    (3) </h2>

Which is the same as:



<h2>T=42.482h     </h2>

Therefore, the answer is:



The orbital period of Io is 42.482 h



7 0
3 years ago
A mechanic pushes a 3540 kg car from rest to a speed of v, doing 4864 J of work in the process. Find the speed v. Neglect fricti
topjm [15]

Answer:

1.66 m/s

Explanation:

Work or kinetic energy = \frac{1}{2} mv^{2}

4864=\frac{1}{2} (3540)v^{2}

v = 1.66 m/s

6 0
2 years ago
A 1,650 kg SUV comes uniformly to a stop. If the vehicle is accelerating at -1.3 m/s^2,
lions [1.4K]

Answer:b

Explanation:

4 0
3 years ago
Starting from zero, the electric current takes 2 seconds to reach half its maximum possible value in an RL circuit with a resist
Leno4ka [110]

Answer:

time=4s

Explanation:

we know that in a RL circuit with a resistance R, an inductance L and a battery of emf E, the current (i) will vary in following fashion

i(t)=\frac{E}{R}(1-e^\frac{-t}{\frac{L}{R}}), where imax=\frac{E}{R}

Given that, at i(2)=\frac{imax}{2} =\frac{E}{2R}

⇒\frac{E}{2R}=\frac{E}{R}(1-e^\frac{-2}{\frac{L}{R}})

⇒\frac{1}{2}=1-e^\frac{-2}{\frac{L}{R}}

⇒\frac{1}{2}=e^\frac{-2}{\frac{L}{R}}

Applying logarithm on both sides,

⇒log(\frac{1}{2})=\frac{-2}{\frac{L}{R}}

⇒log(2)=\frac{2}{\frac{L}{R}}

⇒\frac{L}{R}=\frac{2}{log2}

Now substitute i(t)=\frac{3}{4}imax=\frac{3E}{4R}

⇒\frac{3E}{4R}=\frac{E}{R}(1-e^\frac{-t}{\frac{L}{R}})

⇒\frac{3}{4}=1-e^\frac{-t}{\frac{L}{R}}

⇒\frac{1}{4}=e^\frac{-t}{\frac{L}{R}}

Applying logarithm on both sides,

⇒log(\frac{1}{4})=\frac{-t}{\frac{L}{R}}

⇒log(4)=\frac{t}{\frac{L}{R}}

⇒t=log4\frac{L}{R}

now subs. \frac{L}{R}=\frac{2}{log2}

⇒t=log4\frac{2}{log2}

also log4=log2^{2}=2log2

⇒t=2log2\frac{2}{log2}

⇒t=4

5 0
3 years ago
Other questions:
  • What would be the first thing you would do if your clothes caught fire while working in a laboratory? select one of the options
    12·1 answer
  • Cecily is inflating one of her bicycle tyres with the pump below. When she pushes the plunger down, does the volume of the gas i
    14·1 answer
  • How does making a model help scientist observe?? HELPP PLEASEEE
    9·1 answer
  • Identical forces act for the same length of time on two different masses. The change in momentum of the smaller mass is
    14·1 answer
  • Suppose you lived in the crater Copernicus on the side of the Moon facing Earth.
    7·1 answer
  • Electrons flow in the wire from a(n) terminal to a(n) terminal
    10·1 answer
  • A voltage amplifier needs a high input resistance and a low output resistance. Select one: True False
    8·1 answer
  • When the motion of one or both of the particles is at an angle to the line of impact, the impact is said to be ________
    7·1 answer
  • Which speed is measured in speedometer to track speed violation?
    13·1 answer
  • Rest and motion are relative terms why?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!