Answer:
6.79 g of phosphine can be produced
Explanation:
The reaction is this:
3H₂ + 2P → 2PH₃
We have the mass of the two reactants, so let's find out the limiting reactant, so we can work with the equation. Firstly, we convert the mass to moles (mass / molar mass)
6.2 g / 30.97 g/mol = 0.200 moles of P
4g / 2 g/mol = 2 moles of H₂
Ratio is 3:2.
3 moles of hydrogen react with 2 moles of P
Then, 2 moles of H₂ would react with (2 . 2)/ 3 = 1.3 moles of P.
We have only 0.2 moles of P, so clearly the phosphorous is the limiting reactant.
Ratio is 2:2. So 2 moles of P can produce 2 moles of phosphine. Therefore, 0.2 moles of P must produce the same amount of phosphine.
Let's convert the moles to mass ( mol . molar mass)
0.2 mol . 33.97 g/mol = 6.79 g
Answer:
2KOH + H₂SO₄ → K₂SO₄ + 2H₂O.
Explanation:
- This is an acid-base reaction which produces salt and water according to the balanced equation:
<em>2KOH + H₂SO₄ → K₂SO₄ + 2H₂O.</em>
<em></em>
it is clear that 2.0 moles of KOH react with 1.0 mole of H₂SO₄ to produce 1.0 mole of K₂SO₄ and 2.0 moles of H₂O
It would protect best against C) Alpha radiation, as Beta radiation is stopped by lighter metals such as aluminium, and Gamma radiation can only be stopped by heavier metals such as lead.
Answer:
1. C₄H₁₀ + ¹³/₂O₂ → 4CO₂ + 5H₂O
2. V = 596L
Explanation:
Butane (C₄H₁₀) reacts with oxygen (O₂) to produce carbon dioxide (CO₂) and water (H₂O) thus:
C₄H₁₀ + O₂ → CO₂ + H₂O
1. The balanced chemical equation is:
C₄H₁₀ + ¹³/₂O₂ → 4CO₂ + 5H₂O
2. 0,360kg of butane are:
360g×
=<em>6,19moles of butane</em>
These moles of butane are:
6,19moles of butane×
= <em>24,8 moles CO₂</em>
Using V=nRT/P
Where:
n are moles (24,8 moles CO₂); R is gas constant (0,082atmL/molK); T is temperature, 20°C (293,15K); and P is pressure (1atm).
Volume (V) is:
<em>V = 596L</em>
I hope it helps!
Answer: 316.8 g CrSO3
Explanation: Solution:
2.4 moles CrSO3 x 132 g CrSO3 / 1 mole CrSO3 = 316.8 g CrSO4
The conversion factor is 1 mole of CrSO4 is equal to its molar mass which is 132 g CrSO3