The answer is spring scale
Light of certain energy shines on a metal and causes
electrons to be emitted. Based on the
research of Albert Einstein, the change that would most likely result in
stopping the emission of electrons from this metal is to coat the metal.
Answer:
About 0.0940 M.
Explanation:
Recall that NaOH is a strong base, so it dissociates completely into Na⁺ and OH⁻ ions. Because the acid is monoprotic, we can represent it with HA. Thus, the reaction between HA and NaOH is:

Using the fact that it took 15.00 mL of NaOH to reach the endpoint, determine the number of HA that was reacted with:

Therefore, the molarity of the original solution was:
![\displaystyle \left[ \text{HA}\right] = \frac{0.00188\text{ mol}}{20.00\text{ mL}} \cdot \frac{1000\text{ mL}}{1\text{ L}} = 0.0940\text{ M}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%5B%20%5Ctext%7BHA%7D%5Cright%5D%20%3D%20%5Cfrac%7B0.00188%5Ctext%7B%20mol%7D%7D%7B20.00%5Ctext%7B%20mL%7D%7D%20%5Ccdot%20%5Cfrac%7B1000%5Ctext%7B%20mL%7D%7D%7B1%5Ctext%7B%20L%7D%7D%20%3D%200.0940%5Ctext%7B%20M%7D)
In conclusion, the molarity of the unknown acid is about 0.0940 M.
62.23 = 1512.5001499999998 moles