Evaporation happens<span> when atoms or </span>molecules<span> escape from the liquid and turn into a vapor. Not all of the </span>molecules in a liquid have the same energy. <span>Sometimes a </span>liquid<span> can be sitting in one place (maybe a puddle) and its molecules will become a </span>gas<span>. That's the process called </span>evaporation<span>. It can happen when liquids are cold or when they are warm. It happens more often with warmer liquids. You probably remember that when matter has a higher temperature, the molecules have a higher </span>energy<span>. When the energy in specific molecules reaches a certain level, they can have a </span>phase change<span>. Evaporation is all about the energy in individual molecules, not about the average energy of a system. The average energy can be low and the evaporation still continues. </span>
Answer:
464.1 J absorbed.
Explanation:
Given data:
Specific heat of zinc = 0.39 J/g°C
Mass of zinc = 34 g
Temperature changes = 22°C to 57°C
Energy absorbed or released = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 57°C - 22°C
ΔT = 35°C
Q = m.c. ΔT
Q = 34 g. 0.39 J/g°C. 35°C
Q = 464.1 J
The amount of heat transferred in and out of the system is measured by calorimetry. The thermometer in the calorimeter is used to measure the temperature.
<h3>What are the parts of the calorimetry device?</h3>
The thermometer (A) is a device used to measure the final and the initial temperature of the water or any other liquid in a system. A metal vessel is a place where the reaction mixture is present.
In-vessel (B), water, and metal are placed before the beginning of the experiment. The styrofoam cup or the outer metal vessel (C) insulates the instrument, from regulating the heat transformation.
Therefore, part A measures the temperature of the reaction mixture.
Learn more about insulated containers here:
brainly.com/question/866735
Answer:
when the rates of the forward and reverse reactions are equal
Explanation:
In a chemical system, the reaction reaches a dynamic equilibrium when the rate of formation of product equals the rate of formation of reactants. This implies that both the forward and revered(backwards) reaction are occurring at the same rate.
Yes. When two things are directly prortional, that means that as one increases, the other increases at the same rate. So, say you have a 2kg object at an acceleration of 2m/s^2. The force would be 4N. If you have a 3kg object at an acceleration of 2m/s^2, the force would be 6N. If two things are inversely proportional, that means that as one thing increases the other decreases at the same rate. A good example of this is in a chemical reaction. If you increase the surface area of the reactants, the reaction time decreases. They are inversely proportional.