Explanation:
m = kg. v=m/s. g=m/s^2. h= m
>>1/2mv^2=mgh
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m>>kg m^2/s^2=kg m^2/s^2 the fraction 1/2 won't be able to make any changes to to the dimensional expression of energy i.e half of energy is still energy therefore you can neglect the number .
<u>>>kg m^2/s^2=kg m^2/s^2</u><u> </u>
<u>></u><u>></u><u>J</u>= J
If the bulb is in series with something else, then . . .
-- The brightness of the bulb depends on the <em>other</em> device in the circuit.
-- If the other device is designed to use <em>less power</em> than the bulb, then the
other device gets <em>more power</em> than the bulb gets.
-- If the other device is designed to use <em>more power </em>than the bulb, then the
other device gets <em>less power</em> than the bulb gets.
-- If the other device is removed from the circuit, then the bulb doesn't light at all.
This description of the often-screwy behavior of a series circuit may partly explain
why the electric service in your home is not a series circuit.
Answer:
B. 1700 Hz, 5100 Hz
Explanation:
Parameters given:
Length of ear canal = 5.2cm = 0.052 m
Speed of sound in warm air = 350 m/s
The ear canal is analogous to a tube that has one open end and one closed end. The frequency of standing wave modes in such a tube is given as:
f(m) = m * (v/4L)
Where m is an odd integer;
v = velocity
L = length of the tube
Hence, the two lowest frequencies at which a dog will have increased sensitivity are f(1) and f(3).
f(1) = 1 * [350/(4*0.052)]
f(1) = 1682.69 Hz
Approximately, f(1) = 1700 Hz
f(3) = 3 * [350/(4*0.052)]
f(3) = 5048 Hz
Approximately, f(3) = 5100 Hz
Answer:
c
Explanation:
I makes the most sense in math. if you put a 3 in the m box it will be the same. So all they did is take out the 3 in the m box
Answer:
The correct answer is from solid to liquid (melting), and from liquid to gas (sublimation).
Explanation:
In the solid-state the energy of the molecules is low, so the molecules will have very little movement. In the liquid state, molecules have a higher level of energy, and as they move from solid to liquid state they acquire greater mobility. In a gaseous state, the energy level is very high and the molecules have a higher degree of mobility.
This can also be described through the predominant molecular forces in each state. The cohesion forces present in solids are stronger than those of repulsion. In the liquid state, the repulsion and attraction forces are balanced. Finally, in the gaseous state, the repulsive forces between the molecules predominate.
Have a nice day!