1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
2 years ago
12

3.00 textbook rests on a frictionless, horizontal tabletop surface. A cord attached to the book passes over a pulley whose diame

ter is 0.15 m, to a hanging book with mass 4.00 kg. The system is released from rest, and the books are observed to move 1.00 m in 0.750 s. What is the tension of the cord on 3.00 kg book
Physics
1 answer:
sammy [17]2 years ago
6 0

Answer:

a1 = 3.56 m/s²

Explanation:

We are given;

Mass of book on horizontal surface; m1 = 3 kg

Mass of hanging book; m2 = 4 kg

Diameter of pulley; D = 0.15 m

Radius of pulley; r = D/2 = 0.15/2 = 0.075 m

Change in displacement; Δx = Δy = 1 m

Time; t = 0.75

I've drawn a free body diagram to depict this question.

Since we want to find the tension of the cord on 3.00 kg book, it means we are looking for T1 as depicted in the FBD attached. T1 is calculated from taking moments about the x-axis to give;

ΣF_x = T1 = m1 × a1

a1 is acceleration and can be calculated from Newton's 2nd equation of motion.

s = ut + ½at²

our s is now Δx and a1 is a.

Thus;

Δx = ut + ½a1(t²)

u is initial velocity and equal to zero because the 3 kg book was at rest initially.

Thus, plugging in the relevant values;

1 = 0 + ½a1(0.75²)

Multiply through by 2;

2 = 0.75²a1

a1 = 2/0.75²

a1 = 3.56 m/s²

You might be interested in
A cement block accidentally falls from rest from the ledge of a 52.9-m-high building. When the block is 14.3 m above the ground,
Anna007 [38]

Answer:

The man has at most 0.418 secs to get out of the way

Explanation:

To determine how much time at most the man has to get out of the way, we will calculate the time it will take the block to reach height 1.94m from height 14.3m.

To do this, we will first determine the time it will take the block to reach height 1.94 m from height 52.9 m and find the time it takes the block to reach height 14.3m above the ground from the same height (52.9 m), the difference is the time the man has to get out of the way.

Now, the time it will take the block to reach height 1.94 m from height 52.9 m

This means the time it will take the block to travel a height distance of 52.9m - 1.94m = 50.96m

From one of the equations of motions for free falling bodies

h = ut + 1/2(gt²)

Where h is the height

u is the initial velocity

t is the time

and g is the acceleration due to gravity (Take g = 9.8 m/s²)

From the question, the block falls from rest

∴ u = 0 m/s

h = 50.96 m

Putting these into the equation

50.96 = 0(t) + 1/2(9.8)(t²)

50.96 = 4.9t²

t² = 50.96/4.9

t² = 10.4

t = √10.4

t = 3.225 secs

This is the time it will take to reach height 1.94m (that is to reach the man)

For the time it takes the block to reach height 14.3m above the ground from height 52.9 m

That is, the time it takes the block to travel a height distance of 52.9m - 14.3m = 38.6 m

Here,

h = 38.6 m

and u = 0 m/s

Putting these into the same equation

h = ut + 1/2(gt²)

38.6 = 0(t) + 1/2(9.8)(t²)

38.6 = 4.9t²

t² = 38.6/4.9

t² = 7.878

t = √7.878

t = 2.807 secs

This is the time it takes the block to reach height 14.3 m

Now, the difference in time is 3.225secs - 2.807 secs = 0.418 secs

Hence, the man has at most 0.418 secs to get out of the way.

7 0
3 years ago
How does the north pole of a magnet respond to the poles of other magnets?
tensa zangetsu [6.8K]

Answer:

Explanation:

A magnet has a magnetic field around it which originates at the north pole and enters through the south pole.

In a magnet, like poles will repel each other and unlike poles will attract.

  • The north pole of one magnet will repel another north pole of another magnet.
  • North pole of one magnet will attract the south pole of another magnet.
  • This is the law of attraction and repulsion of magnet.
8 0
3 years ago
Read 2 more answers
The stone, which weighs 400 g, is thrown upwards at a speed of 20 m / s. Climbed to a height of 12 m. Determine: what is equal t
maxonik [38]

Given that,

Mass of the stone, m = 400 g = 0.4 kg

Initial speed, u = 20 m/s

It is climbed to a height of 12 m.

To find,

The work done by the resistance force.

Solution,

Let v is the final speed. It can be calculated by using the conservation of energy.

v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 12} \\\\v=15.33\ m/s

Work done is equal to the change in kinetic energy. It can be given as follows :

W=\dfrac{1}{2}m(v^2-u^2)\\\\=\dfrac{1}{2}\times 0.4\times (15.33^2-20^2)\\\\=-32.99\ J

So, the required work done is 32.99 J.

3 0
2 years ago
Pls help 100 points plssssssss
natima [27]

Answer:

d

Explanation:

8 0
2 years ago
Read 2 more answers
Where is the magnetic south pole compared to the geographical north pole?
Alex777 [14]

Currently, the magnetic south pole lies about ten degrees distant from the geographic north pole, and sits in the Arctic Ocean north of Alaska. The north end on a compass therefore currently points roughly towards Alaska and not exactly towards geographic north.

7 0
3 years ago
Other questions:
  • A bag is gently pushed off the top of a wall at A and swings in a vertical plane at the end of a rope of length l. Determine the
    12·1 answer
  • Which of the following is a vector quantity?
    13·1 answer
  • Based electromagnetic spectrum? on its surface temperature of 6,000 K, most photons that leave the Sun's surface lie in which re
    9·1 answer
  • What is the percentage increase IN kinetic energy(K.E) ,If the momentum(p) of a moving body is increase by 10%?And How? (If K.E=
    15·1 answer
  • I need HELP ASAP please...
    9·2 answers
  • A weather balloon is inflated with 0.80 m3 of helium (He) at ground level (pressure is 1.0 atm). The balloon is released and ris
    6·1 answer
  • A guitar string transmits waves at
    15·1 answer
  • Two point charges, A and B, are separated by a distance of 19.0 cm . The magnitude of the charge on A is twice that of the charg
    7·1 answer
  • If two bodies have different forces but same acceleration and only one force is known how do I find the other one?
    13·1 answer
  • This diagram shows a hydrogen atom. Explain why it looks<br> like it does
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!