Answer:
A: 1.962
B: 3.924
Explanation:
g = G *M /R^2
g = 9.807*M/R^2 the gravitational constant of ground level on earth is about 9.807
g = 9.807*5lbs/R^2 the average brick is about 5 pounds.
g = 9.807*5*10^2. I'm assuming the height is around ten feet to help you out.
with these numbers plugged in you get an acceleration of 0.4905 a final velocity after 4 seconds 1.962. It's height fallen after 4 seconds is 3.924.
( M = whatever the brick weighs it's not specified in the question)
(R = the distance from the ground or how high the scaffold is)
(hopefully you can just plug your numbers in there hope this helps)
Explanation:
Typically, business software technologies are complex, and software strenuous. Business software applications are also often upgraded for changes in business goals or procedures. Real-time systems usually require a lot of hardware components that are quite difficult to change and cannot be upgraded Usually, actual-time safety critical systems that required to be built based on well-planned processes.
Solution :
Given
Diameter of the roulette ball = 30 cm
The speed ball spun at the beginning = 150 rpm
The speed of the ball during a period of 5 seconds = 60 rpm
Therefore, change of speed in 5 seconds = 150 - 60
= 90 rpm
Therefore,
90 revolutions in 1 minute
or In 1 minute the ball revolves 90 times
i.e. 1 min = 90 rev
60 sec = 90 rev
1 sec = 90/ 60 rec
5 sec = 
= 75 rev
Therefore, the ball made 75 revolutions during the 5 seconds.
Answer:0.27
Explanation:
Given
One worker Pushes with force 
other Pulls it with a rope of rope 
mass of crate 
both forces are horizontal and crate slides with a constant speed
Both forces are in the same direction so Friction will oppose the forces and will be equal in magnitude of sum of two forces because crate is moving with constant speed i.e. net force is zero on it

where
is the friction force



where
is the coefficient of static friction


