Cations from smallest to largest
Li⁺ ,Na⁺, K⁺ (from Periodic Table, the bigger number of period, the bigger size, of atom, so the bigger size of cation)
1) LiF smaller cation then KF
1,036 <span>853
</span><span>The lattice energy increases as cations get smaller, as shown by LiF and KF.
</span><span>I think this one should be correct answer, because the compared substances have also the same anion, and we can compare cations in them.
2) The same cation Li , so wrong statement.
3)</span>The same cation Na , so wrong statement.
4) NaCl smaller cation then KF
786 853
Answer:
4.14 x 10²⁴ molecules CO₂
Explanation:
2 C₄H₁₀ + 13 O₂ --> 8 CO₂ + 10 H₂O
To find the number of CO₂ molecules, you need to start with 100 grams of butane (C₄H₁₀), convert to moles (using the molar mass), convert to moles of CO₂ (using coefficients from equation), then convert to molecules (using Avagadro's number). The molar mass of C₄H₁₀ is calculated using the quantity of each element (subscript) multiplied by the number on the periodic table. The ratios should be arranged in a way that allows for units to be cancelled.
4(12.011g/mol) + 10(1.008 g/mol) = 58.124 g/mol C₄H₁₀
100 grams C₄H₁₀ 1 mol C₄H₁₀ 8 mol CO₂
-------------------------- x ---------------------- x ---------------------
58.124 g 2 mol C₄H₁₀
6.022 x 10²³ molecules
x ------------------------------------ = 4.14 x 10²⁴ molecules CO₂
1 mol CO₂
<span>Mg + O2 > MgO. In reactant side, 2 O atoms and 1 Mg are present. In product side, 1 Mg and O atoms are present. Put 2 in product side to balance O atoms and 2 at Mg in reactant side to balance Mg atoms. Therefore the balanced equation becomes, 2Mg + O2 ----> 2MgO. Hope it helps.</span>
<h3>Answer </h3>
After another 5730 years ( three half lives or 17190 years) 17.5 /2 = 8.75mg decays and 8.75g remains left. after three half lives or 17190 years, 8.75 g of C-14 will be
Explanation:
hope this help