Answer:
Option B. 4.25×10¯¹⁹ J
Explanation:
From the question given above, the following data were obtained:
Frequency (f) = 6.42×10¹⁴ Hz
Energy (E) =?
Energy and frequency are related by the following equation:
Energy (E) = Planck's constant (h) × frequency (f)
E = hf
With the above formula, we can obtain the energy of the photon as follow:
Frequency (f) = 6.42×10¹⁴ Hz
Planck's constant (h) = 6.63×10¯³⁴ Js
Energy (E) =?
E = hf
E = 6.63×10¯³⁴ × 6.42×10¹⁴
E = 4.25×10¯¹⁹ J
Thus, the energy of the photon is 4.25×10¯¹⁹ J
<span>1.0 x 10-14. That is the value of Kw at 25 degrees C.
</span>
Answer:
T = 9.875K
Explanation:
The ideal gas Law is PV = nRT.
P = Pressure
V = Volume
n = amount of substance
R = 8.314 J/(K. mol)
T = Temperature in Kelvin
22g CO2
CO2 Molar Mass = 44g/mol
C = 12g/mol
O = 16g/mol
P = 0.8210atm
V = 50L
PV = nRT
0.8210 x 50 = 8.314 x 0.5 x T
41.05 = 4.157T
T = 41.05/4.157
T = 9.875K
Sulfur forms compounds in oxidation states −2 (sulfide, S2−), +4 (sulfite, SO32−), and +6 (sulfate, SO42−). I don't know what type of ion but hope this helps!! :)