The acceleration is 3 m/s per minute, or 0.05 m/s per second.
Density = Mass/Volume
So, given mass = 20 g and volume = 40 cm^3
By substituting in above equation, Density = 20/40 = 0.5 g/cm^3
Hope it helps.
As per energy conservation we know that
Energy enter into the bulb = Light energy + Thermal energy
so now we have
energy enter into the bulb = 100 J
Light energy = 5 J
now from above equation we have



Under the assumption that the tires do not change in volume, apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 210kPa + 101.325kPa
P = 311.325kPa (add 101.325 to change gauge pressure to absolute pressure)
T = 25°C = 298.15K
Final P and T values:
P = ?, T = 0°C = 273.15K
Set the initial and final P/T values equal to each other and solve for the final P:
311.325/298.15 = P/273.15
P = 285.220kPa
Subtract 101.325kPa to find the final gauge pressure:
285.220kPa - 101.325kPa = 183.895271kPa
The final gauge pressure is 184kPa or 26.7psi.
Answer:
Explanation:
Remark
The only thing that might trip you up is what to do with the angle. The vertical component of the 15 degrees does no work against anything. So the 15 degrees limits the horizontal force.
The formula is
Work = F * d * cos(15)
The givens are
F = 2000 N
d = 30 m
Cos(15) = 0.9659
Solution
Work = 2000 * 30 * cos(15)
Work = 57,955
Rounded to two places would be 5.8 * 10^4
C