The answer is d! I’m happy to help :)
<span>Charge of the glass bead Q = 8.0 x 10^-9 C
Distance d = 2.0 cm = 0.02 m
Coulombs constant K = 8.99 x 10^9 Nm^2/C^2
Electric Field E = k x Q / d^2 = 8.99 x 10^9 x 8.0 x 10^-9 / (0.02)^2
E = 71.92 / 0.0004 = 17.98 x 10^4
The electric field is 1.8 x 10^5 N/C</span>
Answer:
Mass remains constant but weight reduces
Explanation:
Mass is the amount of matter in an object so whether on moon or any other planet, it does not change despite the changes in acceleration.
Weight is a product of mass and acceleration due to gravity, expressed as W=mg where m is the mass, W is weight and g is acceleration. From the above formula, it is evident that when you decrease g, then W also decreases while m is constant. Similarly, when m is constant and g is increased then W also increases.
Therefore, for this case, since g decreases, the weight decreases but mass remains constant.
I would say B. Because actual mass would ricochet off the sidewalk.