Answer:
A. Add 4 to both sides of the equation.
Step-by-step explanation:
Isolate your variable by using inverse operations.
Answer:
4 congruent triangles
Step-by-step explanation:
since there is no one of the sum of two sides is less then the third side, so it's possible to form a triangle
Use straightedge and compass, it can draw 4 triangles at a common base
Answer:
f(x) = y + (x*p)
Step-by-step explanation:
Since we are not given actual values we will need to make the function with only variables. Each variable will represent the following...
Fixed Cost: y
Cost per charm: p
Number of charms: x
Therefore, using the variables mentioned above we can combine them into the following linear function using the number of charms as our main input for our function...
f(x) = y + (x*p)
Answer:
a) 98.522
b) 0.881
c) The correlation coefficient and co-variance shows that there is positive association between marks and study time. The correlation coefficient suggest that there is strong positive association between marks and study time.
Step-by-step explanation:
a.
As the mentioned in the given instruction the co-variance is first computed in excel by using only add/Sum, subtract, multiply, divide functions.
Marks y Time spent x y-ybar x-xbar (y-ybar)(x-xbar)
77 40 5.1 1.3 6.63
63 42 -8.9 3.3 -29.37
79 37 7.1 -1.7 -12.07
86 47 14.1 8.3 117.03
51 25 -20.9 -13.7 286.33
78 44 6.1 5.3 32.33
83 41 11.1 2.3 25.53
90 48 18.1 9.3 168.33
65 35 -6.9 -3.7 25.53
47 28 -24.9 -10.7 266.43
![Covariance=\frac{sum[(y-ybar)(x-xbar)]}{n-1}](https://tex.z-dn.net/?f=Covariance%3D%5Cfrac%7Bsum%5B%28y-ybar%29%28x-xbar%29%5D%7D%7Bn-1%7D)
Co-variance=886.7/(10-1)
Co-variance=886.7/9
Co-variance=98.5222
The co-variance computed using excel function COVARIANCE.S(B1:B11,A1:A11) where B1:B11 contains Time x column and A1:A11 contains Marks y column. The resulted co-variance is 98.52222.
b)
The correlation coefficient is computed as
![Correlation coefficient=r=\frac{sum[(y-ybar)(x-xbar)]}{\sqrt{sum[(x-xbar)]^2sum[(y-ybar)]^2} }](https://tex.z-dn.net/?f=Correlation%20coefficient%3Dr%3D%5Cfrac%7Bsum%5B%28y-ybar%29%28x-xbar%29%5D%7D%7B%5Csqrt%7Bsum%5B%28x-xbar%29%5D%5E2sum%5B%28y-ybar%29%5D%5E2%7D%20%7D)
(y-ybar)^2 (x-xbar)^2
26.01 1.69
79.21 10.89
50.41 2.89
198.81 68.89
436.81 187.69
37.21 28.09
123.21 5.29
327.61 86.49
47.61 13.69
620.01 114.49
sum(y-ybar)^2=1946.9
sum(x-xbar)^2=520.1




The correlation coefficient computed using excel function CORREL(A1:A11,B1:B11) where B1:B11 contains Time x column and A1:A11 contains Marks y column. The resulted correlation coefficient is 0.881.
c)
The correlation coefficient and co-variance shows that there is positive association between marks and study time. The correlation coefficient suggest that there is strong positive association between marks and study time. It means that as the study time increases the marks of student also increases and if the study time decreases the marks of student also decreases.
The excel file is attached on which all the related work is done.