S + O2 → SO2
<span>z / (32.0655 g S/mol) x (1 mol SO2 / 1 mol S) x (64.0638 g SO2/mol) = (1.9979 z) g SO2 </span>
<span>C + O2 → CO2 </span>
<span>(9.0-z) / (12.01078 g C/mol) x (1 mol CO2 / 1 mol C) x (44.00964 g CO2/mol) = (32.9776 - 3.66418 z) g CO2 </span>
<span>Add the two masses of SO2 and CO2 and set them equal to the amount given in the problem: </span>
<span>(1.9979 z) + (32.9776 - 3.66418 z) = 27.9 </span>
<span>Solve for z algebraically: </span>
<span>z = 3.0 g S</span>
Cu + S ---> CuS
by reaction 1 mol 1 mol
from the problem 0.25 mol 0.25 mol
0.25 mol Cu
Answer:
1) The elements have filled valence levels.
Explanation:
Since they have filled valence levels, they're stable and don't need to electrons to fill their valence shells since they're already full.
2) False, They do have electrons
3) False, He does have only one electron shell, but going down the periods, every next element have one more electron shell than a preceding one has.
4)False, they're actually the smallest atoms of their respective period
Answer:
Baking soda
Explanation:
Due to its neutralizing properties, sodium bicarbonate can be used to counteract the acid corrosion of car batteries. To use baking soda, in this case, be sure to disconnect the battery terminals before cleaning. Make a paste of three parts baking soda to one part water and apply with a damp cloth to rub the corrosion of the battery terminal. After cleaning and reconnecting the terminals, clean them with petroleum jelly to prevent future corrosion.
6.02 x10^23 atom
3.5g x 1mol/63.55g Cu x 6.02 x 10^23/ 1mol=
3.32 x 10^22 atoms