Answer: Neutron has no charge, electron has a charge and mass. Neutron occurs inside the nucleus where electron is seen outside the nucleus.
Explanation:
Answer:
The equilibrium partial pressure of O2 is 0.545 atm
Explanation:
Step 1: Data given
Partial pressure of SO2 = 0.409 atm
Partial pressure of O2 = 0.601 atm
At equilibrium, the partial pressure of SO2 was 0.297 atm.
Step 2: The balanced equation
2SO2 + O2 ⇆ 2SO3
Step 3: The initial pressure
pSO2 = 0.409 atm
pO2 = 0.601 atm
pSO3 = 0 atm
Step 4: Calculate the pressure at the equilibrium
pSO2 = 0.409 - 2X atm
pO2 = 0.601 - X atm
pSO3 = 2X
pSO2 = 0.409 - 2X atm = 0.297
X = 0.056 atm
pO2 = 0.601 - 0.056 = 0.545 atm
pSO3 = 2*0.056 = 0.112 atm
Step 5: Calculate Kp
Kp = (pSO3)²/((pO2)*(pSO2)²)
Kp = (0.112²) / (0.545 * 0.297²)
Kp = 0.261
The equilibrium partial pressure of O2 is 0.545 atm
Answer:
D
Explanation:I alredy know this i am in 7th gread
Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).
According to the statement
2.12 x 10^4 lbs pounds of CaCO₃ are needed to neutralize this acid
<h3>What is neutralization?</h3>
A chemical reaction in which an acid and a base react quantitatively with each other is known as neutralization or neutralization. In a water reaction, neutralization ensures that there is no excess of hydrogen or hydroxide ions in the solution.
<h3>According to the given information:</h3>
The equation of the neutralization reaction between H2SO4 and CaCO3.
CaCO3 + H2SO4 → CaSO4 + H2CO3
H2CO3 dissociate to water and carbon dioxide.
CaCO3 + H2SO4 → CaSO4 + H2O + CO2
Now solving for the mass of CaCO3 needed to neutralize the acid.
mass of CaCO3 = 9460 Kg H2SO4 × 

= 21284.56606
mass of CaCO3 = 2.12 x 10^4 lbs
2.12 x 10^4 lbs pounds of CaCO₃ are needed to neutralize this acid.
To know more about neutralization visit:
brainly.com/question/12498769
#SPJ4